Кориолисовые массовые расходомеры Proline Cubemass C 500

Технические характеристики

По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Россия +7(495)268-04-70

Казахстан +7(7172)727-132

Киргизия +996(312)96-26-47

эл.почта: ehr@nt-rt.ru || сайт: https://endcounters.nt-rt.ru/

Technical Information **Proline Cubemass C 500**

Coriolis flowmeter

Compact sensor for smallest quantities, with a transmitter remote version with up to $4\ \text{I/Os}$

Application

- Measuring principle operates independently of physical fluid properties such as viscosity or density
- Measuring accurately smallest quantities of liquids and gases

Device properties

- Nominal diameter: DN 1 to 6 ($\frac{1}{24}$ to $\frac{1}{4}$ ")
- Process pressure up to 400 bar (5800 psi)
- Medium temperature up to +205 °C (+401 °F)
- Remote version with up to 4 I/Os
- Backlit display with touch control and WLAN access
- Standard cable between sensor and transmitter

Your benefits

- Space-saving installation compact single-tube design
- Fewer process measuring points multivariable measurement (flow, density, temperature)
- Suitable for skids lightweight sensor
- Full access to process and diagnostic information numerous, freely combinable I/Os and Ethernet
- Reduced complexity and variety freely configurable I/O functionality
- Integrated verification Heartbeat Technology

Table of contents

About this document		Environment	
		Storage temperature	67
Function and system design	5	Climate class	67
Measuring principle		Relative humidity	
Measuring system		Degree of protection	67
Equipment architecture		Vibration- and shock-resistance	
Security	. 9		
		Mechanical load	68
Input	12	Electromagnetic compatibility (EMC)	68
Measured variable		Electromagnetic companionicy (Elvio)	
Measuring range		D.	
Operable flow range		Process	
Input signal		Medium temperature range	
		Density	
Outmark	16	Pressure-temperature ratings	69
	15	Sensor housing	71
Output and input variants		Rupture disk	
Output signal	17	Flow limit	71
Signal on alarm		Pressure loss	71
Load	25 25	System pressure	71
	27	Thermal insulation	71
Low flow cut off	27		72
Protocol-specific data	I	Vibrations	72
		Machanical construction	73
Power supply	33	Mechanical construction	73
Terminal assignment		Dimensions in US units	
Available device plugs	35		
Pin assignment, device plug	36	Weight	
Supply voltage	38	Materials	
Power consumption	38	Process connections	
Current consumption	38	Surface roughness	93
	38		
Power supply failure	38	Operability	93
Electrical connection	38		
	51	Languages	
Potential equalization	51	Local operation	93
Cable entries	51	Remote operation	94
Cable specification	51	Service interface	100
Overvoltage protection		Network integration	101
Overvoitage protection	١/ ا	Supported operating tools	102
		HistoROM data management	103
	57		
Reference operating conditions	57	Certificates and approvals	105
Maximum measured error	57	**	105
Repeatability	58		105
Response time	59	•	105
Influence of ambient temperature	59		105
Influence of medium temperature	59	* *	102 108
Influence of medium pressure	60		
Design fundamentals	60		108
			108
Installation	61		108
			108
Mounting location	62	Certification PROFINET	
Inlet and outlet runs	62		109
	-		109
Mounting the transmitter housing	63 64	Additional certification	
opecial invaliding instructions	04	Other standards and guidelines	109

Ordering information	110
Application packages Diagnostic functionality Heartbeat Technology Concentration measurement Special density OPC-UA Server	110 110 110 111 111 111
Accessories Device-specific accessories Communication-specific accessories Service-specific accessories System components	112 113 114
Documentation Standard documentation Supplementary device-dependent documentation	115
Registered trademarks	116

About this document

Symbols Electrical symbols

Symbol	Meaning
===	Direct current
~	Alternating current
$\overline{\sim}$	Direct current and alternating current
±	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
	Potential equalization connection (PE: protective earth) Ground terminals that must be connected to ground prior to establishing any other connections.
	The ground terminals are located on the interior and exterior of the device: Interior ground terminal: potential equalization is connected to the supply network. Exterior ground terminal: device is connected to the plant grounding system.

Communication-specific symbols

Symbol	Meaning
(F)	Wireless Local Area Network (WLAN) Communication via a wireless, local network.
•	LED Light emitting diode is off.
-\$	LED Light emitting diode is on.
	LED Light emitting diode is flashing.

$Symbols \ for \ certain \ types \ of \ information$

Symbol	Meaning
✓	Permitted Procedures, processes or actions that are permitted.
	Preferred Procedures, processes or actions that are preferred.
X	Forbidden Procedures, processes or actions that are forbidden.
i	Tip Indicates additional information.
Ţ <u>i</u>	Reference to documentation
A B	Reference to page
	Reference to graphic
(Visual inspection

Symbols in graphics

Symbol	Meaning
1, 2, 3,	Item numbers
1., 2., 3.,	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
EX	Hazardous area
X	Safe area (non-hazardous area)
≋➡	Flow direction

Function and system design

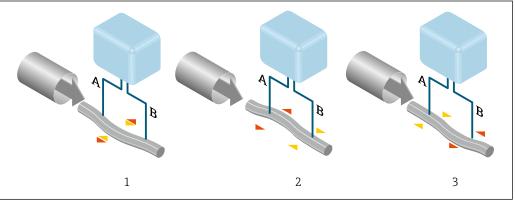
Measuring principle

The measuring principle is based on the controlled generation of Coriolis forces. These forces are always present in a system when both translational and rotational movements are superimposed.

 $F_c = 2 \cdot \Delta m (v \cdot \omega)$

 F_c = Coriolis force

 $\Delta m = moving mass$


 ω = rotational velocity

 $v = radial \ velocity \ in \ rotating \ or \ oscillating \ system$

The amplitude of the Coriolis force depends on the moving mass Δm , its velocity v in the system and thus on the mass flow. Instead of a constant rotational velocity ω , the sensor uses oscillation.

In the sensor, an oscillation is produced in the measuring tube. The Coriolis forces produced at the measuring tube loop cause a phase shift in the tube oscillations (see illustration):

- If there is zero flow (i.e. when the fluid stands still), the oscillation measured at points A and B has the same phase (no phase difference) (1).
- Mass flow causes deceleration of the oscillation at the inlet of the tubes (2) and acceleration at the outlet (3).

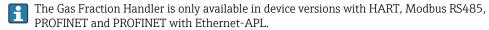
A002993

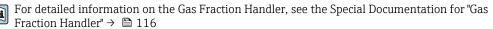
The phase difference (A-B) increases with increasing mass flow. Electrodynamic sensors register the tube oscillations at the inlet and outlet. System balance is ensured by the antiphase oscillation of the two pipe tubes. The measuring principle operates independently of temperature, pressure, viscosity, conductivity and flow profile.

Density measurement

The measuring tube is continuously excited at its resonance frequency. A change in the mass and thus the density of the oscillating system (comprising measuring tube and fluid) results in a corresponding, automatic adjustment in the oscillation frequency. The resonance frequency is thus a function of the medium density. The microprocessor utilizes this relationship to obtain a density signal.

Volume measurement

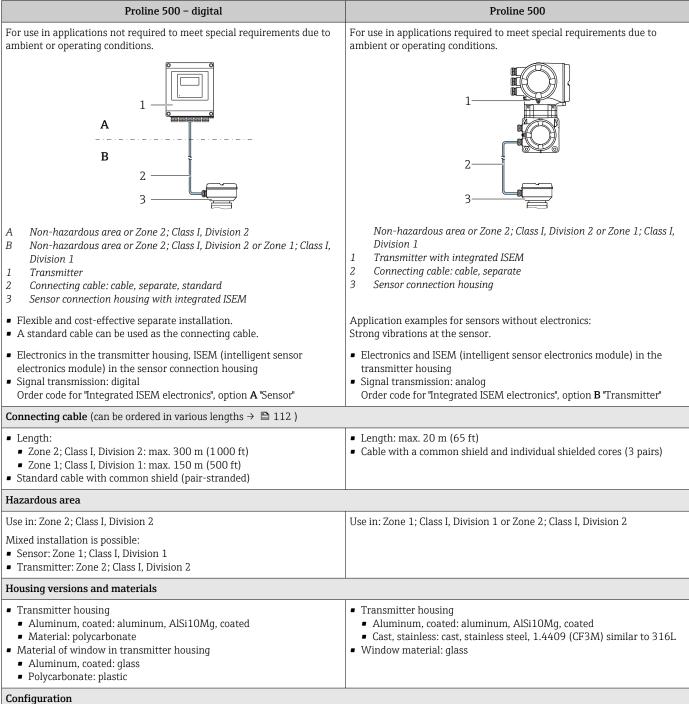

Together with the measured mass flow, this is used to calculate the volume flow.


Temperature measurement

The temperature of the measuring tube is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the process temperature and is also available as an output signal.

Gas Fraction Handler (GFH)

The Gas Fraction Handler is a Promass software function that improves measurement stability and repeatability. The function continuously checks for the presence of disturbances in single-phase flow, i.e. gas bubbles in liquids or droplets in gas. In the presence of the second phase, flow and density become increasingly unstable. The Gas Fraction Handler function improves measurement stability with respect to the severity of the disturbances, without any effect under single-phase flow conditions.

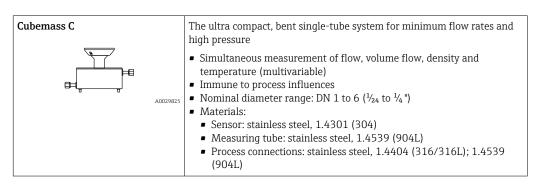


Measuring system

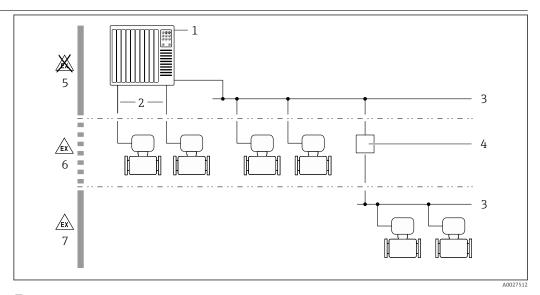
The measuring system consists of a transmitter and a sensor. The transmitter and sensor are mounted in physically separate locations. They are interconnected by connecting cables.

Transmitter

Two versions of the transmitter are available.


- External operation via 4-line, illuminated graphic local display (LCD) with touch control and guided menus ("Make-it-run" wizards) for applicationspecific commissioning.
- Via service interface or WLAN interface:
 - Operating tools (e.g. FieldCare, DeviceCare)
 - Web server (access via Web browser, e.g. Microsoft Internet Explorer, Microsoft Edge)

Sensor connection housing


Different versions of the connection housing are available.

Order code for "Sensor connection housing", option A, "Aluminum, coated": Aluminum, AlSi10Mg, coated This device version is only available in conjunction with the Proline 500 – digital transmitter.
Order code for "Sensor connection housing", option B, "Stainless": Hygienic version, stainless steel 1.4301 (304) Optional: order code for "Sensor feature", option CC "Hygienic version, for maximum corrosion resistance": stainless steel 1.4404 (316L)
Order code for "Sensor connection housing", option C, "Ultra-compact hygienic, stainless": Hygienic version, stainless steel 1.4301 (304) Optional: order code for "Sensor feature", option CC "Hygienic version, for maximum corrosion resistance": stainless steel 1.4404 (316L) This device version is only available in conjunction with the Proline 500 – digital transmitter.
Order code for "Sensor connection housing", option L, "Cast, stainless": 1.4409 (CF3M) similar to 316L

Sensor

Equipment architecture

 $\blacksquare 1$ Possibilities for integrating measuring devices into a system

- 1 Control system (e.g. PLC)
- 2 Connecting cable (0/4 to 20 mA HART etc.)
- 3 Fieldbus
- 4 Coupler
- 5 Non-hazardous area
- 6 Hazardous area: Zone 2; Class I, Division 2
- 7 Hazardous area: Zone 1; Class I, Division 1

Security

IT security

Our warranty is valid only if the product is installed and used as described in the Operating Instructions. The product is equipped with security mechanisms to protect it against any inadvertent changes to the settings.

IT security measures, which provide additional protection for the product and associated data transfer, must be implemented by the operators themselves in line with their security standards.

Device-specific IT security

The device offers a range of specific functions to support protective measures on the operator's side. These functions can be configured by the user and guarantee greater in-operation safety if used correctly. An overview of the most important functions is provided in the following section:

Function/interface	Factory setting	Recommendation
Write protection via hardware write protection switch $\Rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Not enabled	On an individual basis following risk assessment
Access code (also applies for Web server login or FieldCare connection) → 🖺 10	Not enabled (0000)	Assign a customized access code during commissioning
WLAN (order option in display module)	Enabled	On an individual basis following risk assessment
WLAN security mode	Enabled (WPA2- PSK)	Do not change
WLAN passphrase (password) → 🖺 10	Serial number	Assign a customized WLAN passphrase during commissioning
WLAN mode	Access point	On an individual basis following risk assessment
Web server → 🖺 10	Enabled	On an individual basis following risk assessment
CDI-RJ45 service interface → 🗎 11	-	On an individual basis following risk assessment

9

Protecting access via hardware write protection

Write access to the parameters of the device via the local display, Web browser or operating tool (e.g. FieldCare, DeviceCare) can be disabled via a write protection switch (DIP switch on the main electronics module). When hardware write protection is enabled, only read access to the parameters is possible.

Hardware write protection is disabled when the device is delivered.

Protecting access via a password

Different passwords are available to protect write access to the device parameters or access to the device via the WLAN interface.

- User-specific access code
 - Protect write access to the device parameters via the local display, Web browser or operating tool (e.g. FieldCare, DeviceCare). Access authorization is clearly regulated through the use of a user-specific access code.
- WLAN passphrase
 - The network key protects a connection between an operating unit (e.g. notebook or tablet) and the device via the WLAN interface which can be ordered as an option.
- Infrastructure mode
 - When the device is operated in infrastructure mode, the WLAN passphrase corresponds to the WLAN passphrase configured on the operator side.

User-specific access code

Write access to the device parameters via the local display, Web browser or operating tool (e.g. FieldCare, DeviceCare) can be protected by the modifiable, user-specific access code.

WLAN passphrase: Operation as WLAN access point

A connection between an operating unit (e.g. notebook or tablet) and the device via the WLAN interface, which can be ordered as an optional extra, is protected by the network key. The WLAN authentication of the network key complies with the IEEE 802.11 standard.

When the device is delivered, the network key is pre-defined depending on the device. It can be changed via the **WLAN settings** submenu in the **WLAN passphrase** parameter.

Infrastructure mode

A connection between the device and WLAN access point is protected by means of an SSID and passphrase on the system side. Please contact the relevant system administrator for access.

General notes on the use of passwords

- The access code and network key supplied with the device should be changed during commissioning.
- Follow the general rules for generating a secure password when defining and managing the access code or network key.
- The user is responsible for the management and careful handling of the access code and network key.

Access via Web server

The device can be operated and configured via a Web browser with the integrated Web server. The connection is via the service interface (CDI-RJ45) or the WLAN interface. For device versions with the EtherNet/IP and PROFINET communication protocols, the connection can also be established via the terminal connection for signal transmission with EtherNet/IP, PROFINET (RJ45 plug) or PROFINET with Ethernet-APL (two-wire).

The Web server is enabled when the device is delivered. The Web server can be disabled if necessary (e.g. after commissioning) via the **Web server functionality** parameter.

The device and status information can be hidden on the login page. This prevents unauthorized access to the information.

For detailed information on device parameters, see:

Access via OPC-UA

The device can communicate with OPC UA clients using the "OPC UA Server" application package.

The OPC UA server integrated in the device can be accessed via the WLAN access point using the WLAN interface - which can be ordered as an optional extra - or the service interface (CDI- RJ45) via Ethernet network. Access rights and authorization as per separate configuration.

The following Security Modes are supported as per the OPC UA Specification (IEC 62541):

- None
- Basic128Rsa15 signed
- Basic128Rsa15 signed and encrypted

Access via service interface (CDI-RJ45)

The device can be connected to a network via the service interface (CDI-RJ45). Device-specific functions quarantee the secure operation of the device in a network.

The use of relevant industrial standards and guidelines that have been defined by national and international safety committees, such as IEC/ISA62443 or the IEEE, is recommended. This includes organizational security measures such as the assignment of access authorization as well as technical measures such as network segmentation.

- Transmitters with an Ex de approval may not be connected via the service interface (CDI-RJ45)!

 Order code for "Approval transmitter + sensor", options (Ex de): BA, BB, C1, C2, GA, GB, MA, MB, NA, NB
- The device can be incorporated into a ring topology. The device is integrated via the terminal connection for signal transmission (output 1) and the connection to the service interface (CDI-RJ45).

Input

Measured variable

Direct measured variables

- Mass flow
- Density
- Temperature

Calculated measured variables

- Volume flow
- Corrected volume flow
- Reference density

Measuring range

Measuring range for liquids

DN		Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$	
[mm]	[in]	[kg/h]	[lb/min]
1	1/24	0 to 20	0 to 0.735
2	1/12	0 to 100	0 to 3.675
4	1/8	0 to 450	0 to 16.54
6	1/4	0 to 1000	0 to 36.75

Measuring range for gases

The full scale value depends on the density and the sound velocity of the gas used. The full scale value can be calculated with the following formulas: $\frac{1}{2}$

$$\dot{m}_{max(G)} = minimum \ of \qquad \qquad (\dot{m}_{max(F)} \cdot \rho_G : x \) \ and \ \ \label{eq:maxg}$$

$$(\rho_G\cdot (c_G/2)\cdot d_i{}^2\cdot (\pi/4)\cdot 3600\cdot n)$$

m _{max(G)}	Maximum full scale value for gas [kg/h]	
m _{max(F)}	Maximum full scale value for liquid [kg/h]	
$\dot{m}_{\max(G)} < \dot{m}_{\max(F)}$	$\dot{m}_{ max(G)}$ can never be greater than $\dot{m}_{ max(F)}$	
ρ_{G}	Gas density in [kg/m³] at operating conditions	
х	Limitation constant for max. gas flow [kg/m³]	
c_{G}	Sound velocity (gas) [m/s]	
d _i	Measuring tube internal diameter [m]	
π	Pi	
n = 1	Number of measuring tubes	

DN		х
[mm]	[in]	[kg/m³]
1	1/24	20
2	1/12	20
4	1/8	20
6	1/4	20

If calculating the full scale value using the two formulas:

- 1. Calculate the full scale value with both formulas.
- 2. The smaller value is the value that must be used.

Recommended measuring range

Flow limit → **1** 71

Operable flow range

Over 1000:1.

Flow rates above the preset full scale value do not override the electronics unit, with the result that the totalizer values are registered correctly.

Input signal

Output and input variants

→ 🖺 15

External measured values

To increase the accuracy of certain measured variables or to calculate the corrected volume flow for gases, the automation system can continuously write different measured values to the measuring device:

- Operating pressure to increase accuracy (ecommends the use of a pressure measuring device for absolute pressure, e.q. Cerabar M or Cerabar S)
- Medium temperature to increase accuracy (e.g. iTEMP)
- Reference density for calculating the corrected volume flow for gases
- Various pressure and temperature measuring devices can be ordered fromsee "Accessories" section $\Rightarrow \triangleq 114$

It is recommended to read in external measured values to calculate the corrected volume flow.

HART protocol

The measured values are written from the automation system to the measuring device via the HART protocol. The pressure transmitter must support the following protocol-specific functions:

- HART protocol
- Burst mode

Current input

Digital communication

The measured values can be written by the automation system via:

- FOUNDATION Fieldbus
- PROFIBUS DP
- PROFIBUS PA
- Modbus RS485
- EtherNet/IP
- PROFINET
- PROFINET with Ethernet-APL

Current input 0/4 to 20 mA

Current input	0/4 to 20 mA (active/passive)
Current span	4 to 20 mA (active)0/4 to 20 mA (passive)
Resolution	1 μΑ
Voltage drop	Typically: 0.6 to 2 V for 3.6 to 22 mA (passive)
Maximum input voltage	≤ 30 V (passive)

Open-circuit voltage	≤ 28.8 V (active)
Possible input variables	PressureTemperatureDensity

Status input

Maximum input values	■ DC -3 to 30 V ■ If status input is active (ON): $R_i > 3 \text{ k}\Omega$
Response time	Configurable: 5 to 200 ms
Input signal level	 Low signal: DC -3 to +5 V High signal: DC 12 to 30 V
Assignable functions	 Off Reset the individual totalizers separately Reset all totalizers Flow override

Output

Output and input variants

Depending on the option selected for output/input 1, different options are available for the other outputs and inputs. Only one option can be selected for each output/input 1 to 4. The following tables must be read vertically (\downarrow) .

Example: If the option BA "4-20 mA HART" was selected for output/input 1, one of the options A, B, D, E, F, H, I or J is available for output 2 and one of the options A, B, D, E, F, H, I or J is available for output 3 and 4.

Output/input 1 and options for output/input 2

Options for output/input 3 and 4 \rightarrow $\stackrel{\triangle}{=}$ 16

Order code for "Output; input 1" (020) →						Possi	ble o	ption	.s				
Current output 4 to 20 mA HART	BA												
Current output 4 to 20 mA HART Ex i passive	4	CA											
Current output 4 to 20 mA HART Ex i active		1	CC										
FOUNDATION Fieldbus			1	SA									
FOUNDATION Fieldbus Ex i				4	TA								
PROFIBUS DP					4	LA							
PROFIBUS PA						4	GA						
PROFIBUS PA Ex i							4	НА					
Modbus RS485								4	MA				
EtherNet/IP 2-port switch integrated									4	NA			
PROFINET 2-port switch integrated										\rightarrow	RA		
PROFINET with Ethernet-APL											→	RB	
PROFINET with Ethernet-APL Ex i												\	RC
Order code for "Output; input 2" (021) →	4	\	4	4	\	4	\	4	4	→	→	\	\
Not assigned	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Current output 4 to 20 mA	В			В		В	В		В	В	В	В	
Current output 4 to 20 mA Ex i passive		С	С		С			С					С
User-configurable input/output 1)	D			D		D	D		D	D	D	D	
Pulse/frequency/switch output	Е			Е		Е	Е		Е	Е	Е	Е	
Double pulse output ²⁾	F								F				
Pulse/frequency/switch output Ex i passive		G	G		G			G					G
Relay output	Н			Н		Н	Н		Н	Н	Н	Н	
Current input 0/4 to 20 mA	I			I		I	I		I	I	I	I	
Status input	J			J		J	J		J	J	J	J	

²⁾ If double pulse output (F) is selected for output/input 2 (021), only the double pulse output (F) option is available for selection for output/input 3 (022).

Output/input 1 and options for output/input 3 and 4

Options for output/input $2 \rightarrow \triangleq 15$

order code for "Output; input 1" (020) → Possible options													
Current output 4 to 20 mA HART	ВА												
Current output 4 to 20 mA HART Ex i passive	4	CA											
Current output 4 to 20 mA HART Ex i active		4	CC										
FOUNDATION Fieldbus			4	SA									
FOUNDATION Fieldbus Ex i				\	TA								
PROFIBUS DP					\	LA							
PROFIBUS PA						4	GA						
PROFIBUS PA Ex i							4	НА					
Modbus RS485								\	MA				
EtherNet/IP 2-port switch integrated									4	NA			
PROFINET 2-port switch integrated										→	RA		
PROFINET with Ethernet-APL											4	RB	
PROFINET with Ethernet-APL Ex i												4	RC
Order code for "Output; input 3" (022), "Output; input 4" (023) $^{1)}$ \rightarrow	4	4	4	4	4	4	4	4	\	→	4	4	4
Not assigned	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Current output 4 to 20 mA	В					В			В	В	В	В	
Current output 4 to 20 mA Ex i passive ²⁾		С	С										
User-configurable input/output	D					D			D	D	D	D	
Pulse/frequency/switch output	Е					Е			Е	Е	Е	Е	
Double pulse output (slave) ³⁾	F								F				
Pulse/frequency/switch output Ex i passive ⁴⁾		G	G										
Relay output	Н					Н			Н	Н	Н	Н	
Current input 0/4 to 20 mA	I					I			I	I	I	I	
Status input	J					J			J	J	J	J	

The order code for "Output; input 4" (023) is only available for the Proline 500-digital transmitter, order code for "Integrated ISEM electronics", 1)

The current output 4 to 20 mA Ex i passive (C) option is not available for input/output 4.

³⁾

The double pulse output (F) option is not available for input/output 4. The pulse/frequency/switch output Ex i passive (G) option is not available for input/output 4. 4)

Output signal

Current output 4 to 20 mA HART

Order code	"Output; input 1" (20): Option BA: current output 4 to 20 mA HART
Signal mode	Can be set to: Active Passive
Current range	Can be set to: 4 to 20 mA NAMUR 4 to 20 mA US 4 to 20 mA 0 to 20 mA (only if the signal mode is active) Fixed current
Open-circuit voltage	DC 28.8 V (active)
Maximum input voltage	DC 30 V (passive)
Load	250 to 700 Ω
Resolution	0.38 μΑ
Damping	Configurable: 0 to 999.9 s
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Density Reference density Temperature Electronics temperature Oscillation frequency 0 Oscillation damping 0 Signal asymmetry Exciter current 0 The range of options increases if the measuring device has one or more application packages.

Current output 4 to 20 mA HART Ex i

Order code	"Output; input 1" (20) choose from: Option CA: current output 4 to 20 mA HART Ex i passive Option CC: current output 4 to 20 mA HART Ex i active
Signal mode	Depends on the selected order version.
Current range	Can be set to: 4 to 20 mA NAMUR 4 to 20 mA US 4 to 20 mA 0 to 20 mA (only if the signal mode is active) Fixed current
Open-circuit voltage	DC 21.8 V (active)
Maximum input voltage	DC 30 V (passive)
Load	 250 to 400 Ω (active) 250 to 700 Ω (passive)
Resolution	0.38 μΑ

Damping	Configurable: 0 to 999.9 s
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Density Reference density Temperature Electronics temperature Oscillation frequency 0 Oscillation damping 0 Signal asymmetry Exciter current 0 The range of options increases if the measuring device has one or more application packages.

FOUNDATION Fieldbus

FOUNDATION Fieldbus	H1, IEC 61158-2, galvanically isolated
Data transfer	31.25 kbit/s
Current consumption	10 mA
Permitted supply voltage	9 to 32 V
Bus connection	With integrated reverse polarity protection

PROFIBUS DP

Signal encoding	NRZ code
Data transfer	9.6 kBaud12 MBaud
Terminating resistor	Integrated, can be activated via DIP switches

PROFIBUS PA

PROFIBUS PA	In accordance with EN 50170 Volume 2, IEC 61158-2 (MBP), galvanically isolated
Data transmission	31.25 kbit/s
Current consumption	10 mA
Permitted supply voltage	9 to 32 V
Bus connection	With integrated reverse polarity protection

Modbus RS485

Physical interface	RS485 in accordance with EIA/TIA-485 standard
Terminating resistor	Integrated, can be activated via DIP switches

EtherNet/IP

Standards	In accordance with IEEE 802.3
-----------	-------------------------------

PROFINET

Standards	In accordance with IEEE 802.3
-----------	-------------------------------

PROFINET with Ethernet-APL

Device use	Device connection to an APL field switch
	The device may only be operated according to the following APL port
	classifications:
	 If used in hazardous areas: SLAA or SLAC ¹⁾ If used in non-hazardous areas: SLAX
	Connection values of APL field switch (corresponds to APL port classification SPCC or SPAA, for instance):
	 Maximum input voltage: 15 V_{DC} Minimum output values: 0.54 W
	Device connection to an SPE switch
	The device may only be operated according to the following PoDL power class: If used in the non-hazardous area: PoDL power class 10
	Connection values of SPE switch (corresponds to PoDL power class 10, 11 or 12): • Maximum input voltage: 30 V _{DC} • Minimum output values: 1.85 W
PROFINET	According to IEC 61158 and IEC 61784
Ethernet-APL	According to IEEE 802.3cg, APL port profile specification v1.0, galvanically isolated
Data transfer	10 Mbit/s
Current consumption	Transmitter
•	■ Max. 400 mA(24 V)
	■ Max. 200 mA (110 V, 50/60 Hz; 230 V, 50/60 Hz)
Permitted supply voltage	9 to 30 V
Network connection	With integrated reverse polarity protection

1) For more information on using the device in the hazardous area, see the Ex-specific Safety Instructions

Current output 4 to 20 mA

Order code	"Output; input 2" (21), "Output; input 3" (022) or "Output; input 4" (023): Option B: current output 4 to 20 mA
Signal mode	Can be set to: Active Passive
Current span	Can be set to: 4 to 20 mA NAMUR 4 to 20 mA US 4 to 20 mA 0 to 20 mA (only if the signal mode is active) Fixed current
Maximum output values	22.5 mA
Open-circuit voltage	DC 28.8 V (active)
Maximum input voltage	DC 30 V (passive)
Load	0 to 700Ω
Resolution	0.38 μΑ

Damping	Configurable: 0 to 999.9 s
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Density Reference density Temperature Electronics temperature Oscillation frequency 0 Oscillation damping 0 Signal asymmetry Exciter current 0 The range of options increases if the measuring device has one or more application packages.

Current output 4 to 20 mA Ex i passive

Order code	"Output; input 2" (21), "Output; input 3" (022): Option C: current output 4 to 20 mA Ex i passive
Signal mode	Passive
Current span	Can be set to: 4 to 20 mA NAMUR 4 to 20 mA US 4 to 20 mA Fixed current
Maximum output values	22.5 mA
Maximum input voltage	DC 30 V
Load	0 to $700~\Omega$
Resolution	0.38 μΑ
Damping	Configurable: 0 to 999 s
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Density Reference density Temperature Electronics temperature Oscillation frequency 0 Oscillation damping 0 Signal asymmetry Exciter current 0 The range of options increases if the measuring device has one or more application packages.

Pulse/frequency/switch output

Function	Can be configured as pulse, frequency or switch output
Version	Open collector
	Can be set to: Active Passive Passive Lari, passive
Maximum input values	DC 30 V, 250 mA (passive)
Open-circuit voltage	DC 28.8 V (active)
Voltage drop	For 22.5 mA: < DC 2 V

Pulse output	
Maximum input values	DC 30 V, 250 mA (passive)
Maximum output current	22.5 mA (active)
Open-circuit voltage	DC 28.8 V (active)
Pulse width	Configurable: 0.05 to 2 000 ms
Maximum pulse rate	10 000 Impulse/s
Pulse value	Configurable
Assignable measured variables	 Mass flow Volume flow Corrected volume flow
Frequency output	
Maximum input values	DC 30 V, 250 mA (passive)
Maximum output current	22.5 mA (active)
Open-circuit voltage	DC 28.8 V (active)
Output frequency	Configurable: end value frequency 2 to $10000Hz(f_{max}=12500Hz)$
Damping	Configurable: 0 to 999.9 s
Pulse/pause ratio	1:1
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Density Reference density Temperature Electronics temperature Oscillation frequency 0 Oscillation damping 0 Signal asymmetry Exciter current 0 The range of options increases if the measuring device has one or more application packages.
Switch output	
Maximum input values	DC 30 V, 250 mA (passive)
Open-circuit voltage	DC 28.8 V (active)
Switching behavior	Binary, conductive or non-conductive
Switching delay	Configurable: 0 to 100 s
Number of switching cycles	Unlimited
Assignable functions	■ Off ■ On ■ Diagnostic behavior ■ Limit value ■ Mass flow ■ Volume flow ■ Corrected volume flow ■ Density ■ Reference density ■ Temperature ■ Totalizer 1-3 ■ Flow direction monitoring ■ Status ■ Partially filled pipe detection ■ Low flow cut off The range of options increases if the measuring device has one or more application packages.

Double pulse output

Function	Double pulse
Version	Open collector
	Can be set to: Active Passive Passive NAMUR
Maximum input values	DC 30 V, 250 mA (passive)
Open-circuit voltage	DC 28.8 V (active)
Voltage drop	For 22.5 mA: ≤ DC 2 V
Output frequency	Configurable: 0 to 1000 Hz
Damping	Configurable: 0 to 999 s
Pulse/pause ratio	1:1
Assignable measured variables	 Mass flow Volume flow Corrected volume flow Density Reference density Temperature The range of options increases if the measuring device has one or more application packages.

Relay output

Function	Switch output
Version	Relay output, galvanically isolated
Switching behavior	Can be set to: NO (normally open), factory setting NC (normally closed)
Maximum switching capacity (passive)	 DC 30 V, 0.1 A AC 30 V, 0.5 A
Assignable functions	 Off On Diagnostic behavior Limit value Mass flow Volume flow Corrected volume flow Density Reference density Temperature Totalizer 1-3 Flow direction monitoring Status Partially filled pipe detection Low flow cut off The range of options increases if the measuring device has one or more application packages.

User-configurable input/output

 $\textbf{One} \ specific input \ or \ output \ is \ assigned \ to \ a \ user-configurable \ input/output \ (configurable \ I/O) \ during \ device \ commissioning.$

The following inputs and outputs are available for assignment:

- Choice of current output: 4 to 20 mA (active), 0/4 to 20 mA (passive)
- Pulse/frequency/switch output
- Choice of current input: 4 to 20 mA (active), 0/4 to 20 mA (passive)
- Status input

The technical values correspond to those of the inputs and outputs described in this section.

Signal on alarm

Depending on the interface, failure information is displayed as follows:

HART current output

Device diagnostics	Device condition can be read out via HART Command 48

PROFIBUS PA

Status and alarm messages	Diagnostics in accordance with PROFIBUS PA Profile 3.02
Failure current FDE (Fault Disconnection Electronic)	0 mA

PROFIBUS DP

Status and alarm	Diagnostics in accordance with PROFIBUS PA Profile 3.02
messages	

EtherNet/IP

Device diagnostics	Device condition can be read out in Input Assembly
--------------------	--

PROFINET

PROFINET with Ethernet-APL

Device diagnostics	Diagnostics according to PROFINET PA Profile 4
--------------------	--

FOUNDATION Fieldbus

Status and alarm messages	Diagnostics in accordance with FF-891
Failure current FDE (Fault Disconnection Electronic)	0 mA

Modbus RS485

Failure mode	Choose from:
	 NaN value instead of current value
	■ Last valid value

Current output 0/4 to 20 mA

4 to 20 mA

Failure mode	Choose from: 4 to 20 mA in accordance with NAMUR recommendation NE 43 4 to 20 mA in accordance with US Min. value: 3.59 mA
	 Max. value: 22.5 mA Freely definable value between: 3.59 to 22.5 mA Actual value Last valid value

0 to 20 mA

Failure mode	Choose from:
	■ Maximum alarm: 22 mA
	■ Freely definable value between: 0 to 20.5 mA

Pulse/frequency/switch output

Pulse output	
Failure mode	Choose from: Actual value No pulses
Frequency output	
Failure mode	Choose from: Actual value O Hz Defined value (f max 2 to 12 500 Hz)
Switch output	
Failure mode	Choose from: Current status Open Closed

Relay output

Failure mode	Choose from:
	Current status
	■ Open
	■ Closed
	■ Closed

Local display

Plain text display	With information on cause and remedial measures
Backlight	Red backlighting indicates a device error.

Status signal as per NAMUR recommendation NE 107

Interface/protocol

- Via digital communication:
 - HART protocol
 - FOUNDATION Fieldbus
 - PROFIBUS PA
 - PROFIBUS DP
 - Modbus RS485
 - EtherNet/IP
 - PROFINET
 - PROFINET with Ethernet-APL
- Via service interface
 - CDI-RJ45 service interface
 - WLAN interface

Plain text display	With information on cause and remedial measures
--------------------	---

Web browser

Plain text display With information on cause and remedial measures	
--	--

Light emitting diodes (LED)

Status information	Status indicated by various light emitting diodes
	The following information is displayed depending on the device version: Supply voltage active Data transmission active Device alarm/error has occurred EtherNet/IP network available EtherNet/IP connection established PROFINET network available PROFINET connection established PROFINET blinking feature

Load

Output signal \rightarrow \blacksquare 17

Ex connection data

Safety-related values

Order code for "Output; input 1"	Output type	Safety-related values "Output; input 1"	
		26 (+)	27 (-)
Option BA	Current output 4 to 20 mA HART	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option GA	PROFIBUS PA	$U_{N} = 32 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option LA	PROFIBUS DP	$U_{N} = 32 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option MA	Modbus RS485	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option SA	FOUNDATION Fieldbus	$U_{N} = 32 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option NA	EtherNet/IP	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	

Order code for "Output; input 1"	Output type	Safety-related values "Output; input 1"	
		26 (+)	27 (-)
Option RA	PROFINET	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option RB	PROFINET with Ethernet- APL	APL port profile SLAX SPE PoDL classes 10, 11, 12 $U_N = 30 \ V_{DC}$ $U_M = 250 \ V_{AC}$	2

Order code for	Output type	Safety-related values							
"Output; input 2"; "Output; input 3" "Output; input 4"		Output;	Output; input 2		Output; input 2		input 3	Output 4	; input
• / •		24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)		
Option B	Current output 4 to 20 mA	$U_{\rm N} = 30 \text{V}$ $U_{\rm M} = 250 \text{V}$	20						
Option D	User-configurable input/ output	$U_{\rm N} = 30 \text{V}$ $U_{\rm M} = 250 \text{V}$	DC						
Option E	Pulse/frequency/switch output	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$							
Option F	Double pulse output	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$							
Option H	Relay output	$U_N = 30 V_{DC}$ $I_N = 100 \text{ mA}_{DC} / 500 \text{ mA}_{AC}$ $U_M = 250 V_{AC}$							
Option I	Current input 4 to 20 mA	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$							
Option J	Status input	1 11	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$						

¹⁾ The order code "Output; input 4" is only available for the Proline 500 – digital transmitter.

Intrinsically safe values

Output type	Intrinsically safe values "Output; input 1"		
	26 (+)	27 (-)	
Current output 4 to 20 mA HART Ex i passive	$\begin{split} &U_{i} = 30 \text{ V} \\ &l_{i} = 100 \text{ mA} \\ &P_{i} = 1.25 \text{ W} \\ &L_{i} = 0 \mu\text{H} \\ &C_{i} = 6 \text{ nF} \end{split}$		
Current output 4 to 20 mA HART Ex i active	Ex ia $^{1)}$ $U_0 = 21.8 \text{ V}$ $I_0 = 90 \text{ mA}$ $P_0 = 491 \text{ mW}$ $L_0 = 4.1 \text{ mH (IIC)/15 mH (IIB)}$ $C_0 = 160 \text{ nF (IIC)/}$ $1 160 \text{ nF (IIB)}$ $U_i = 30 \text{ V}$ $I_i = 10 \text{ mA}$ $P_i = 0.3 \text{ W}$	•	
	Current output 4 to 20 mA HART Ex i passive Current output 4 to 20 mA HART Ex i	$ \begin{array}{c c} \text{Current output} & U_i = 30 \text{ V} \\ 4 \text{ to 20 mA HART Ex i} & I_i = 100 \text{ mA} \\ passive & P_i = 1.25 \text{ W} \\ L_i = 0 \mu\text{H} \\ C_i = 6 \text{ nF} \\ \end{array} $ $ \begin{array}{c c} \text{Current output} & \textbf{Ex ia}^{1)} \\ 4 \text{ to 20 mA HART Ex i} & U_0 = 21.8 \text{ V} \\ I_0 = 90 \text{ mA} \\ P_0 = 491 \text{ mW} \\ L_0 = 4.1 \text{ mH (IIC)/15 mH (IIB)} \\ C_0 = 160 \text{ nF (IIC)/} \\ 1 160 \text{ nF (IIB)} \\ U_i = 30 \text{ V} \\ I_i = 10 \text{ mA} \\ \end{array} $	

Order code "Output; input 1"	Output type	Intrinsically safe values "Output; input 1"		
		26 (+)	27 (-)	
Option HA	PROFIBUS PA Ex i (FISCO Field Device)	$Ex ia ^{1)} \\ U_i = 30 V \\ l_i = 570 mA \\ P_i = 8.5 W \\ L_i = 10 \mu H \\ C_i = 5 nF$	Ex ic 2 $U_{i} = 32 \text{ V}$ $l_{i} = 570 \text{ mA}$ $P_{i} = 8.5 \text{ W}$ $L_{i} = 10 \mu\text{H}$ $C_{i} = 5 \text{ nF}$	
Option TA	FOUNDATION Fieldbus Ex i	$\begin{aligned} \textbf{Ex ia}^{\ 1)} \\ U_i &= 30 \text{ V} \\ l_i &= 570 \text{ mA} \\ P_i &= 8.5 \text{ W} \\ L_i &= 10 \mu\text{H} \\ C_i &= 5 \text{ nF} \end{aligned}$	Ex ic 2) $U_{i} = 32 \text{ V}$ $l_{i} = 570 \text{ mA}$ $P_{i} = 8.5 \text{ W}$ $L_{i} = 10 \mu\text{H}$ $C_{i} = 5 \text{ nF}$	
Option RC	PROFINET with Ethernet-APL Ex i	Ex ia ¹⁾ 2-WISE power load APL port profile SLAA	Ex ic ²⁾ 2-WISE power load APL port profile SLAC	

- 1) Only available for Proline 500 transmitter Zone 1; Class I, Division 1.
- 2) Only available for transmitter Zone 2; Class I, Division 2 and only for Proline 500 digital transmitter

Order code for	Output type	I	Intrinsically safe values or NIFW values			S		
"Output; input 2"; "Output; input 3"; "Output; input 4"		Output;	Output; input 2		Output; input 2 Output; input 3		Output;	input 4
Output, input 4		24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)	
Option C	Current output 4 to 20 mA Ex i passive	$ \begin{aligned} &U_i = 30 \text{ V} \\ &l_i = 100 \text{ r} \\ &P_i = 1.25 \\ &L_i = 0 \\ &C_i = 0 \end{aligned} $	nA					
Option G	Pulse/frequency/switch output Ex i passive	$\begin{aligned} &U_i = 30 \text{ V} \\ &l_i = 100 \text{ r} \\ &P_i = 1.25 \\ &L_i = 0 \\ &C_i = 0 \end{aligned}$	nA					

The order code "Output; input 4" is only available for the Proline 500 – digital transmitter.

Low flow cut off

The switch points for low flow cut off are user-selectable.

Galvanic isolation

The outputs are galvanically isolated:

- ullet from the power supply
- lacktriangledown from one another
- from the potential equalization (PE) terminal

Protocol-specific data

HART

Manufacturer ID	0x11
Device type ID	0x3B
HART protocol revision	7
Device description files (DTM, DD)	
HART load	Min. 250 Ω
System integration	Information on system integration: Operating Instructions → 🗎 115. ■ Measured variables via HART protocol ■ Burst Mode functionality

FOUNDATION Fieldbus

Manufacturer ID	0x452B48 (hex)
Ident number	0x103B (hex)
Device revision	1
DD revision	Information and files under:
CFF revision	
Interoperability Test Kit (ITK)	Version 6.2.0
ITK Test Campaign Number	Information:
Link Master capability (LAS)	Yes
Choice of "Link Master" and "Basic Device"	Yes Factory setting: Basic Device
Node address	Factory setting: 247 (0xF7)
Supported functions	The following methods are supported: Restart ENP Restart Diagnostic Set to OOS Set to AUTO Read trend data Read event logbook
Virtual Communication Relation	onships (VCRs)
Number of VCRs	44
Number of link objects in VFD	50
Permanent entries	1
Client VCRs	0
Server VCRs	10
Source VCRs	43
Sink VCRs	0
Subscriber VCRs	43
Publisher VCRs	43
Device Link Capabilities	
Slot time	4
Min. delay between PDU	8
Max. response delay	16
System integration	Information regarding system integration: Operating Instructions → 🖺 115. Cyclic data transmission Description of the modules Execution times Methods

PROFIBUS DP

Manufacturer ID	0x11
Ident number	0x156F
Profile version	3.02

Device description files (GSD, DTM, DD)	Information and files under: On the device product page: PRODUCTS → Product Finder → Links ■
Supported functions	 Identification & Maintenance Simplest device identification on the part of the control system and nameplate PROFIBUS upload/download Reading and writing parameters is up to ten times faster with PROFIBUS upload/download Condensed status Simplest and self-explanatory diagnostic information by categorizing diagnostic messages that occur
Configuration of the device address	 DIP switches on the I/O electronics module Via operating tools (e.g. FieldCare)
Compatibility with earlier model	If the device is replaced, the measuring device Promass 500 supports the compatibility of the cyclic data with previous models. It is not necessary to adjust the engineering parameters of the PROFIBUS network with the Promass 500 GSD file.
	Previous model: Promass 83 PROFIBUS DP ■ ID No.: 1529 (hex) ■ Extended GSD file: EH3x1529.gsd ■ Standard GSD file: EH3_1529.gsd Description of the function scope of compatibility: Operating Instructions → 115.
System integration	Information regarding system integration: Operating Instructions → 🗎 115. Cyclic data transmission Block model Description of the modules

PROFIBUS PA

Manufacturer ID	0x11
Ident number	0x156D
Profile version	3.02
Device description files (GSD, DTM, DD)	Information and files under: On the device product page: PRODUCTS → Product Finder → Links ■
Supported functions	 Identification & Maintenance Simplest device identification on the part of the control system and nameplate PROFIBUS upload/download Reading and writing parameters is up to ten times faster with PROFIBUS upload/download Condensed status Simplest and self-explanatory diagnostic information by categorizing diagnostic messages that occur
Configuration of the device address	 DIP switches on the I/O electronics module Local display Via operating tools (e.g. FieldCare)

Compatibility with earlier model	If the device is replaced, the measuring device Promass 500 supports the compatibility of the cyclic data with previous models. It is not necessary to adjust the engineering parameters of the PROFIBUS network with the Promass 500 GSD file.				
	Earlier models: Promass 80 PROFIBUS PA ID No.: 1528 (hex) Extended GSD file: EH3x1528.gsd Standard GSD file: EH3_1528.gsd Promass 83 PROFIBUS PA ID No.: 152A (hex) Extended GSD file: EH3x152A.gsd Standard GSD file: EH3x152A.gsd				
	Description of the function scope of compatibility: Operating Instructions $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
System integration	Information regarding system integration: Operating Instructions → 🗎 115. Cyclic data transmission Block model Description of the modules				

Modbus RS485

Protocol	Modbus Applications Protocol Specification V1.1
Response times	 Direct data access: typically 25 to 50 ms Auto-scan buffer (data range): typically 3 to 5 ms
Device type	Slave
Slave address range	1 to 247
Broadcast address range	0
Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast messages	Supported by the following function codes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Supported baud rate	■ 1200 BAUD ■ 2400 BAUD ■ 4800 BAUD ■ 9600 BAUD ■ 19200 BAUD ■ 38400 BAUD ■ 57600 BAUD ■ 115200 BAUD
Data transfer mode	■ ASCII ■ RTU
Data access	Each device parameter can be accessed via Modbus RS485. For Modbus register information

Compatibility with earlier model	If the device is replaced, the measuring device Promass 500 supports the compatibility of the Modbus registers for the process variables and the diagnostic information with the previous model Promass 83. It is not necessary to change the engineering parameters in the automation system. □ Description of the function scope of compatibility: Operating Instructions → ■ 115.
System integration	Information on system integration: Operating Instructions → 🗎 115. ■ Modbus RS485 information ■ Function codes ■ Register information ■ Response time ■ Modbus data map

EtherNet/IP

Protocol	 The CIP Networks Library Volume 1: Common Industrial Protocol The CIP Networks Library Volume 2: EtherNet/IP Adaptation of CIP
Communication type	■ 10Base-T ■ 100Base-TX
Device profile	Generic device (product type: 0x2B)
Manufacturer ID	0x000049E
Device type ID	0x103B
Baud rates	Automatic ¹⁰ / ₁₀₀ Mbit with half-duplex and full-duplex detection
Polarity	Auto-polarity for automatic correction of crossed TxD and RxD pairs
Supported CIP connections	Max. 3 connections
Explicit connections	Max. 6 connections
I/O connections	Max. 6 connections (scanner)
Configuration options for measuring device	 DIP switches on the electronics module for IP addressing Manufacturer-specific software (FieldCare) Add-on Profile Level 3 for Rockwell Automation control systems Web browser Electronic Data Sheet (EDS) integrated in the measuring device
Configuration of the EtherNet interface	 Speed: 10 MBit, 100 MBit, auto (factory setting) Duplex: half-duplex, full-duplex, auto (factory setting)
Configuration of the device address	 DIP switches on the electronics module for IP addressing (last octet) DHCP Manufacturer-specific software (FieldCare) Add-on Profile Level 3 for Rockwell Automation control systems Web browser EtherNet/IP tools, e.g. RSLinx (Rockwell Automation)
Device Level Ring (DLR)	Yes
System integration	Information regarding system integration: Operating Instructions $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	Cyclic data transmissionBlock modelInput and output groups

PROFINET

Protocol	Application layer protocol for decentral device periphery and distributed automation, Version 2.3
Communication type	100 MBit/s
Conformance Class	Conformance Class B
Netload Class	Netload Class 2 0 Mbps

Baud rates	Automatic 100 Mbit/s with full-duplex detection
Cycle times	From 8 ms
Polarity	Auto-polarity for automatic correction of crossed TxD and RxD pairs
Media Redundancy Protocol (MRP)	Yes
System redundancy support	System redundancy S2 (2 AR with 1 NAP)
Device profile	Application interface identifier 0xF600 Generic device
Manufacturer ID	0x11
Device type ID	0x843B
Device description files (GSD, DTM, DD)	Information and files under: On the product page for the device: Documents/Software → Device drivers ■
Supported connections	 2 x AR (IO Controller AR) 1 x AR (IO-Supervisor Device AR connection allowed) 1 x Input CR (Communication Relation) 1 x Output CR (Communication Relation) 1 x Alarm CR (Communication Relation)
Configuration options for measuring device	 DIP switches on the electronics module, for device name assignment (last part) Asset management software (FieldCare, DeviceCare, Field Xpert) Integrated Web server via Web browser and IP address Device master file (GSD), can be read out via the integrated Web server of the measuring device. Onsite operation
Configuration of the device name	 DIP switches on the electronics module, for device name assignment (last part) DCP protocol Asset management software (FieldCare, DeviceCare, Field Xpert) Integrated Web server
Supported functions	 Identification & Maintenance, simple device identifier via: Control system Nameplate Measured value status The process variables are communicated with a measured value status Blinking feature via the local display for simple device identification and assignment Device operation via asset management software (e.g. FieldCare, DeviceCare, SIMATIC PDM)
System integration	Information regarding system integration: Operating Instructions → 🗎 115. Cyclic data transmission Overview and description of the modules Status coding Startup configuration Factory setting

PROFINET with Ethernet-APL

Protocol	Application layer protocol for decentral device periphery and distributed automation, Version 2.4
Communication type	Ethernet Advanced Physical Layer 10BASE-T1L
Conformance Class	Conformance Class B (PA)
Netload Class	Netload Class 2 0 Mbps
Baud rates	10 Mbit/s Full-duplex
Cycle times	64 ms

D. 1. 11	A , , , , , , , , , , , , , , , , , , ,							
Polarity	Automatic correction of crossed "APL signal +" and "APL signal -" signal lines							
Media Redundancy Protocol (MRP)	Not possible (point-to-point connection to APL field switch)							
System redundancy support	System redundancy S2 (2 AR with 1 NAP)							
Device profile	PROFINET PA profile 4 (Application interface identifier API: 0x9700)							
Manufacturer ID	0x11							
Device type ID	0xA43B							
Device description files (GSD, DTM, FDI)	Information and files under: On the device product page: PRODUCTS → Product Finder → Links ■							
Supported connections	 2x AR (IO Controller AR) 2x AR (IO Supervisor Device AR connection allowed) 							
Configuration options for measuring device	 DIP switches on the electronics module, for device name assignment (last part) Asset management software (FieldCare, DeviceCare, Field Xpert) Integrated Web server via Web browser and IP address Device master file (GSD), can be read out via the integrated Web server of the measuring device. Onsite operation 							
Configuration of the device name	 DIP switches on the electronics module, for device name assignment (last part) DCP protocol Asset management software (FieldCare, DeviceCare, Field Xpert) Integrated Web server 							
Supported functions	 Identification & Maintenance, simple device identifier via: Control system Nameplate Measured value status The process variables are communicated with a measured value status Blinking feature via the local display for simple device identification and assignment Device operation via asset management software (e.g. FieldCare, DeviceCare, SIMATIC PDM with FDI package) 							
System integration	Information regarding system integration: Operating Instructions → 🖹 115. Cyclic data transmission Overview and description of the modules Status coding Startup configuration Factory setting							

Power supply

Terminal assignment

Transmitter: supply voltage, input/outputs

HART

Supply	voltage	Input/output 1		Input/output 2		Input/output 3		Input/output 4	
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		The terminal assignment depends on the specific device version ordered $\rightarrow \stackrel{\square}{=} 15$.							

FOUNDATION Fieldbus

Supply voltage Inpu		Input/	output I	Input/output 2		Input/output 3		Input/output 4	
1 (+)	2 (-)	26 (A)	27 (B)	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		The terminal assignment depends on the specific device version ordered $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $							

PROFIBUS DP

Supply voltage		Input/	output L	Input/output 2		Input/output 3		Input/output 4	
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		The terminal assignment depends on the specific device version ordered $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $							

PROFIBUS PA

Supply	Supply voltage Input/output 1		Input/output 2		Input/output 3		Input/output 4		
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		The terminal assignment depends on the specific device version ordered $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $							

Modbus RS485

Supply	voltage	Input/	output L	Input/	output 2	Input/	output 3	Input/	output 1
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		The terminal assignment depends on the specific device version ordered $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $							

EtherNet/IP

S	Supply	voltage	Input/output 1	Input/	output 2	Input/	output 3	Input/	output 1
	1 (+)	2 (-)	EtherNet/IP (RJ45 connector)		I	I	ds on the sp	20 (+) pecific device	

PROFINET

Supply	voltage	Input/output 1	Input/	output 2	Input/	output 3	Input/	output 1
1 (+)	2 (-)	PROFINET	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		(RJ45 connector)	The terminal assignment depends on the specific device ve ordered $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $					version

PROFINET with Ethernet-APL

Supply	voltage	Input/output 1	Input/	output 2	Input/	output 3	Input/	output 4
1 (+)	2 (-)	EtherNet/IP	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		(RJ45 connector)	The terminal assign:		ment depends on the sp ordered → 🖺 15.		ecific device	version

Transmitter and sensor connection housing: connecting cable

The sensor and transmitter, which are mounted in separate locations, are interconnected by a connecting cable. The cable is connected via the sensor connection housing and the transmitter housing.

Terminal assignment and connection of the connecting cable:

- Proline 500 digital → 🖺 38
- Proline 500 → 🖺 39

Available device plugs

Device plugs may not be used in hazardous areas!

Device plugs for fieldbus systems:

Order code for "Input; output 1"

- Option **SA** "FOUNDATION Fieldbus" → 🖺 35
- Option **GA** "PROFIBUS PA" → 🗎 35
- Option **NA** "EtherNet/IP" → 🖺 35
- Option **RA** "PROFINET" → 🖺 36
- Option **RB** "PROFINET with Ethernet-APL" → 🖺 36

Device plug for connecting to the service interface:

Order code for "Accessory mounted"

Option NB, adapter RJ45 M12 (service interface) → 🖺 37

Order code for "Input; output 1", option SA "FOUNDATION Fieldbus"

Order code for	Cable entry/connection → 🗎 40				
"Electrical connection"	2	3			
M, 3, 4, 5	7/8" connector	-			

Order code for "Input; output 1", option GA "PROFIBUS PA"

Order code for	Cable entry/connection → 🖺 40				
"Electrical connection"	2	3			
L, N, P, U	Connector M12 × 1	-			

Order code for "Input; output 1", option NA "EtherNet/IP"

Order code for	Cable entry/connection → 🖺 40				
"Electrical connection"	2	3			
L, N, P, U	Connector M12 × 1	-			
R 1) 2), S 1) 2), T 1) 2), V 1) 2)	Connector M12 × 1	Connector M12 × 1			

Cannot be combined with an external WLAN antenna (order code for "Enclosed accessories", option P8) of an RJ45 M12 adapter for the service interface (order code for "Accessories mounted", option NB) or of the remote display and operating module DKX001

2) Suitable for integrating the device in a ring topology.

Order code for "Input; output 1", option RA "PROFINET"

Order code for	Cable entry/connection → 🖺 40		
"Electrical connection"	2	3	
L, N, P, U	Connector M12 × 1	-	
R ^{1) 2)} , S ^{1) 2)} , T ^{1) 2)} , V ^{1) 2)}	Connector M12 × 1	Connector M12 × 1	

- Cannot be combined with an external WLAN antenna (order code for "Enclosed accessories", option P8) of 1) an RJ45 M12 adapter for the service interface (order code for "Accessories mounted", option NB) or of the remote display and operating module DKX001.
- 2) Suitable for integrating the device in a ring topology.

Order code for "Input; output 1", option RB "PROFINET with Ethernet-APL"

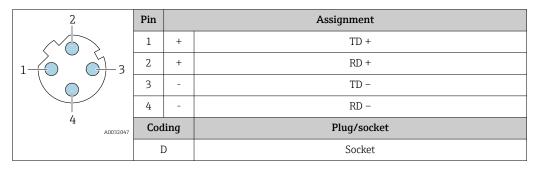
Order code	Cable entry/connection → 🗎 40		
"Electrical connection"	2	3	
L, N, P, U	M12 plug × 1	-	

Order code for "Accessory mounted", option NB "Adapter RJ45 M12 (service interface)"

Order code	Cable entry/coupling → 🖺 40		
"Accessory mounted"	Cable entry 2	Cable entry 3	
NB	Plug M12 × 1	-	

Pin assignment, device plug

FOUNDATION Fieldbus


	Pin		Assignment	Coding	Plug/socket
2 / 3	1	+	Signal +	A	Plug
1 4	2	-	Signal –		
	3		Grounding		
	4		Not assigned		

PROFIBUS PA

	Pin		Assignment	Coding	Plug/socket
2 3	1	+	PROFIBUS PA +	A	Plug
1 4	2		Grounding		
	3	-	PROFIBUS PA -		
	4		Not assigned		

- Recommended plug:
 Binder, series 713, part no. 99 1430 814 04
 - Phoenix, part no. 1413934 SACC-FS-4QO SH PBPA SCO

PROFINET

Recommended plug:

Binder, series 825, part no. 99 3729 810 04

■ Phoenix, part no. 1543223 SACC-M12MSD-4Q

PROFINET with Ethernet-APL

	Pin		Assignment	Coding	Plug/socket	
3 4	1	-	APL signal -	A	Socket	
2 1	2	+	APL signal +			
	3		Cable shield ¹			
	4		Not assigned			
	Metal plug housing		Cable shield			
	¹ If a cable shield is used					

Recommended plug:

- Binder, series 713, part no. 99 1430 814 04
- Phoenix, part no. 1413934 SACC-FS-4QO SH PBPA SCO

EtherNet/IP

2	Pin		Assignment
	1	+	Tx
1 3	2	+	Rx
	3	-	Tx
	4	-	Rx
4 A0032047	Coding		Plug/socket
	Ι)	Socket

Recommended plug:

- Binder, series 763, part no. 99 3729 810 04
- Phoenix, part no. 1543223 SACC-M12MSD-4Q

Service interface

Order code for "Accessories mounted", option NB: Adapter RJ45 M12 (service interface)

2	Pin	Assignment		
	1	+	Tx	
1 3	2	+	Rx	
	3	-	Tx	
	4	-	Rx	
4 A0032047				

Coding	Plug/socket
D	Socket

Recommended plug:

- Binder, series 763, part no. 99 3729 810 04
- Phoenix, part no. 1543223 SACC-M12MSD-4Q

Supply voltage

Order code for "Power supply"	Terminal voltage		Frequency range
Option D	DC 24 V	±20%	-
Option E	AC 100 to 240 V	-15 to +10%	50/60 Hz
Option I	DC 24 V	±20%	-
	AC 100 to 240 V	-15 to +10%	50/60 Hz

Power consumption

Transmitter

Max. 10 W (active power)

switch-on current	Max. 36 A (<5 ms) as per NAMUR Recommendation NE 21
-------------------	---

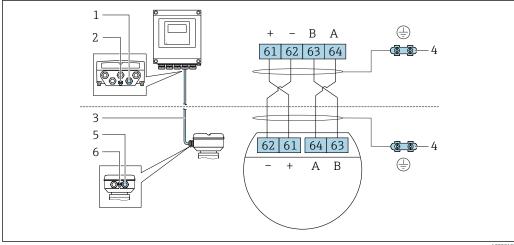
Current consumption

Transmitter

- Max. 400 mA (24 V)
- Max. 200 mA (110 V, 50/60 Hz; 230 V, 50/60 Hz)

Power supply failure

- Totalizers stop at the last value measured.
- Depending on the device version, the configuration is retained in the device memoryor in the pluggable data memory (HistoROM DAT).
- Error messages (incl. total operated hours) are stored.


Overcurrent protection element

The device must be operated with a dedicated circuit breaker, as it does not have an ON/OFF switch

- The circuit breaker must be easy to reach and labeled accordingly.
- Permitted nominal current of the circuit breaker: 2 A up to maximum 10 A.

Electrical connection

Connection of connecting cable: Proline 500 - digital

- Cable entry for cable on transmitter housing 1
- 2 Terminal connection for potential equalization (PE)
- 3 Connecting cable ISEM communication
- 4 Grounding via ground connection; in the version with a device plug, grounding is ensured through the plug
- 5 Cable entry for cable or connection of device plug on sensor connection housing
- Terminal connection for potential equalization (PE)

Depending on the device version of the sensor connection housing, the connecting cable is connected via terminals or device plugs.

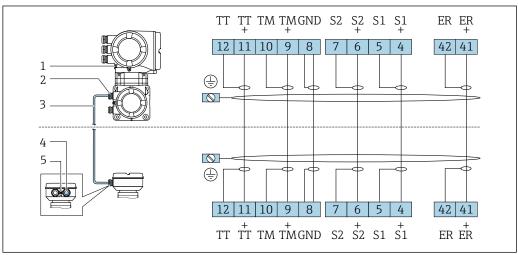
Sensor connection housing Order code for "Housing"	Connection on connection housing via	Connection on transmitter housing via
Option A : aluminum coated	Terminals	Terminals
Option B : stainless	Terminals	Terminals
Option C : ultra-compact, hygienic, stainless	Device plug	Terminals
Option L: cast, stainless	Terminals	Terminals

Pin assignment, device plug

Device plugs are only available for device version, order code for "Housing":

Option ${\bf C}$: ultra-compact, hygienic, stainless

For connection to sensor connection housing.

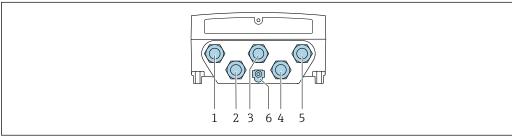

2	Pin	Color 1)		Assignment Connection to termin	
3 0 0 1	1	Brown	+	Supply voltage	61
	2	White	Α	ISEM communication	64
	3	Blue	В		63
4	4	Black	-	Supply voltage	62
	5	-		_	-
	Coding			Plug/socket	
	A			Plug	

1) Cable colors of connecting cable

A connecting cable with a device plug is optionally available.

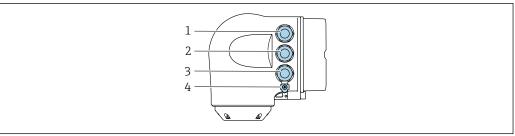
Connection of the connecting cable: Proline 500

The connecting cable is connected via terminals.


- 1 Terminal connection for potential equalization (PE)
- 2 Cable entry for connecting cable on transmitter connection housing
- 3 Connecting cable
- 4 Cable entry for connecting cable on sensor connection housing
- 5 Terminal connection for potential equalization (PE)

Transmitter connection

- Terminal assignment → 🖺 33
- Device plug pin assignment → 🖺 36


Transmitter connection: Proline 500 - digital

- Terminal connection for supply voltage
- 2 Terminal connection for signal transmission, input/output
- Terminal connection for signal transmission, input/output 3
- Terminal connection for connecting cable between sensor and transmitter
- Terminal connection for signal transmission, input/output or terminal for network connection (DHCP client) via service interface (CDI-RJ45); optional: terminal connection for external WLAN antenna
- Terminal connection for potential equalization (PE)
- An adapter for RJ45 to the M12 plug is optionally available: Order code for "Accessories", option NB: "Adapter RJ45 M12 (service interface)"

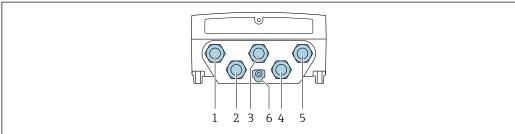
The adapter connects the service interface (CDI-RJ45) to an M12 plug mounted in the cable entry. Therefore the connection to the service interface can be established via an M12 plug without opening the device.

Connecting the transmitter: Proline 500

- Terminal connection for supply voltage
- Terminal connection for signal transmission, input/output 2
- 3 Terminal connection for signal transmission, input/output or terminal for network connection (DHCP client) via service interface (CDI-RJ45); optional: terminal connection for external WLAN antenna
- Terminal connection for potential equalization (PE)
- An adapter for RJ45 to the M12 plug is optionally available: Order code for "Accessories", option NB: "Adapter RJ45 M12 (service interface)"

The adapter connects the service interface (CDI-RJ45) to an M12 plug mounted in the cable entry. Therefore the connection to the service interface can be established via an M12 plug without opening the device.

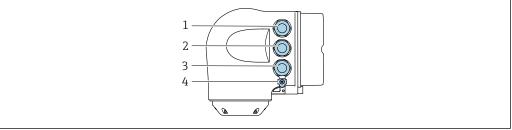
Network connection (DHCP client) via service interface (CDI-RJ45) →


100

Connecting in a ring topology

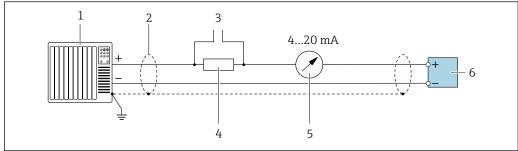
Device versions with EtherNet/IP and PROFINET communication protocols can be integrated into a ring topology. The device is integrated via the terminal connection for signal transmission (output 1) and the connection to the service interface (CDI-RJ45).

- Transmitters with an Ex de approval may **not** be connected via the service interface (CDI-RJ45)! Order code for "Approval transmitter + sensor", options (Ex de): BB, C2, GB, MB, NB
- Integrate the transmitter in a ring topology:
 - EtherNet/IP
 - PROFINET


Transmitter: Proline 500 - digital

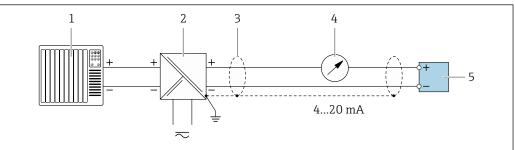
A0028200

- 1 Terminal connection for supply voltage
- 2 Terminal connection for signal transmission, input/output
- 2 Terminal connection for signal transmission: PROFINET or EtherNet/IP (RJ45 plug)
- 4 Terminal connection for connecting cable between sensor and transmitter
- 5 Terminal connection to service interface (CDI-RJ45)
- 6 Terminal connection for potential equalization (PE)

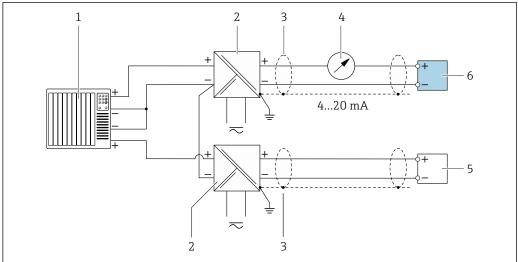

Transmitter: Proline 500

- 1 Terminal connection for supply voltage
- 2 Terminal connection for signal transmission: PROFINET or EtherNet/IP (RJ45 plug)
- 3 Terminal connection to service interface (CDI-RJ45)
- 4 Terminal connection for potential equalization (PE)
- If the device has additional inputs/outputs, these are routed in parallel via the cable entry for connection to the service interface.

Connection examples

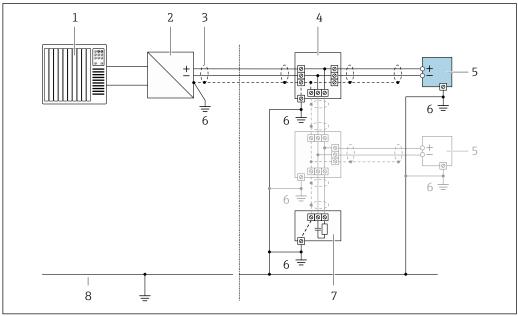

Current output 4 to 20 mA HART

A0029055

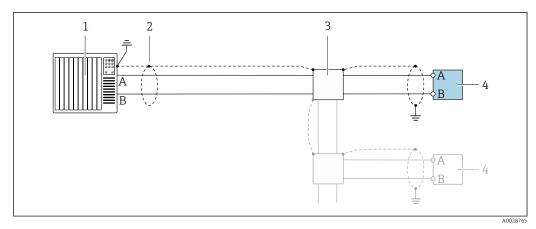

- 2 Connection example for 4 to 20 mA HART current output (active)
- 1 Automation system with current input (e.g. PLC)
- 3 Connection for HART operating devices →

 94
- 4 Resistor for HART communication ($\geq 250 \Omega$): observe maximum load $\Rightarrow \triangleq 17$
- 5 Analog display unit: observe maximum load $\rightarrow \square$ 17
- 6 Transmitter

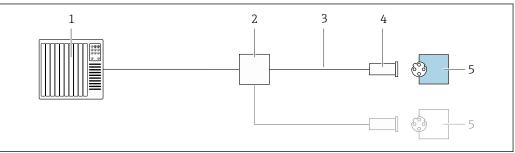
- 3 Connection example for 4 to 20 mA HART current output (passive)
- 1 Automation system with current input (e.g. PLC)
- 2 Power supply
- 3 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications $\rightarrow \stackrel{\triangle}{=} 51$
- 4 Analog display unit: observe maximum load → 🖺 17
- 5 Transmitter


HART input

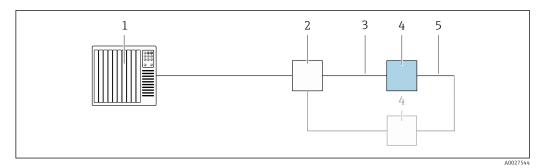
A0029763


- 4 Connection example for HART input with a common negative (passive)
- 1 Automation system with HART output (e.g. PLC)
- 2 Active barrier for power supply (e.g. RN221N)
- 3 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications
- 4 Analog display unit: observe maximum load \rightarrow $\stackrel{\triangle}{=}$ 17
- 5 Pressure transmitter (e.g. Cerabar M, Cerabar S): see requirements
- 6 Transmitter

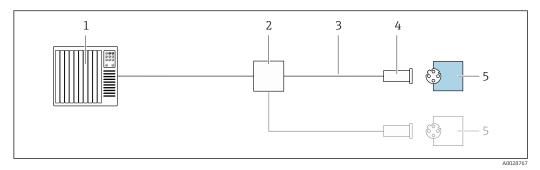
PROFIBUS PA


- 5 Connection example for PROFIBUS PA
- 1 Control system (e.g. PLC)
- 2 PROFIBUS PA segment coupler
- 3 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications
- 4 T-box
- 5 Measuring device
- 6 Local grounding
- 7 Bus terminator
- 8 Potential matching line

PROFIBUS DP

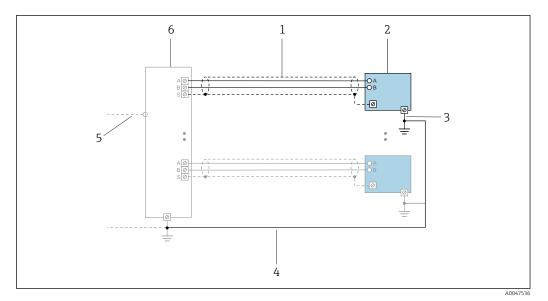

- \blacksquare 6 Connection example for PROFIBUS DP, non-hazardous area and Zone 2/Div. 2
- 1 Control system (e.g. PLC)
- 2 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications
- 3 Distribution box
- 4 Transmitter
- If baud rates > 1.5 MBaud an EMC cable entry must be used and the cable shield must continue as far as the terminal wherever possible.

EtherNet/IP

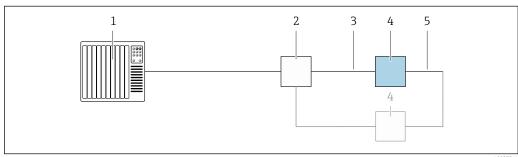

- 7 Connection example for EtherNet/IP
- 1 Control system (e.g. PLC)
- 2 Ethernet switch
- 3 Observe cable specifications
- 4 Device plug
- 5 Transmitter

EtherNet/IP: DLR (Device Level Ring)

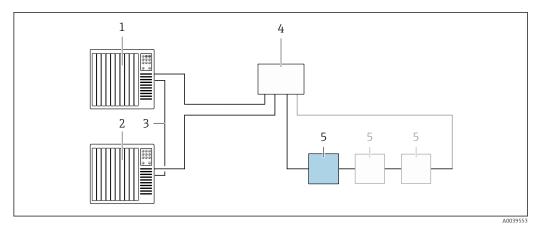
- Control system (e.g. PLC)
- 2 Ethernet switch
- 3 4
- Transmitter
- Connecting cable between the two transmitters


PROFINET

₽8 ${\it Connection\ example\ for\ PROFINET}$

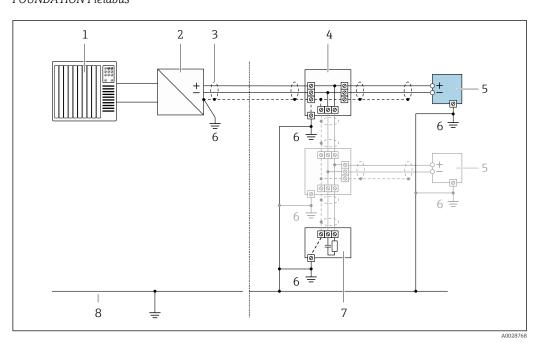

- Control system (e.g. PLC)
- 2 Ethernet switch
- Observe cable specifications 3
- Device plug
- Transmitter

PROFINET with Ethernet-APL


- **9** ${\it Connection example for PROFINET with Ethernet-APL}$
- 1 Cable shield
- 2 Measuring device
- 3 Local grounding
- Potential equalization
 Trunk or TCP
- 5
- Field switch

PROFINET: MRP (Media Redundancy Protocol)

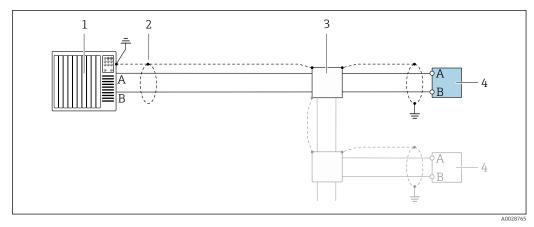
- Control system (e.g. PLC) Ethernet switch
- 2
- 3 *Observe cable specifications* $\rightarrow \implies 51$
- Transmitter 4
- ${\it Connecting\ cable\ between\ the\ two\ transmitters}$


PROFINET: system redundancy S2

■ 10 $Connection\ example\ for\ system\ redundancy\ S2$

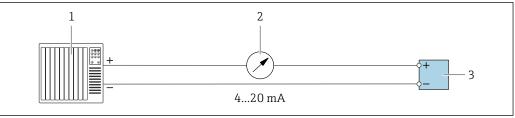
- Control system 1 (e.g. PLC)
- Synchronization of control systems 2
- Control system 2 (e.g. PLC)
- 4 Industrial Ethernet Managed Switch
- Transmitter

FOUNDATION Fieldbus

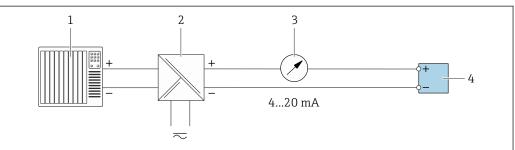


■ 11 Connection example for FOUNDATION Fieldbus

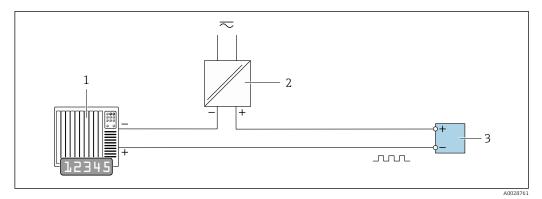
- 1
- Control system (e.g. PLC) Power Conditioner (FOUNDATION Fieldbus) 2
- 3 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications
- T-box
- Measuring device
- Local grounding 6
- Bus terminator
- Potential matching line


47

Modbus RS485

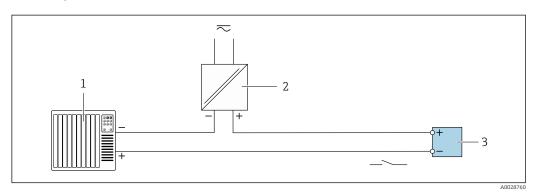

- \blacksquare 12 Connection example for Modbus RS485, non-hazardous area and Zone 2; Class I, Division 2
- 1 Control system (e.g. PLC)
- 2 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications
- 3 Distribution box
- 4 Transmitter

Current output 4-20 mA


A00287

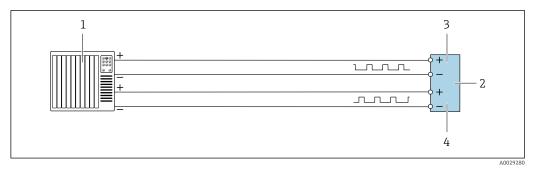
- 13 Connection example for 4-20 mA current output (active)
- $1 \qquad \hbox{Automation system with current input (e.g. PLC)}$
- 2 Analog display unit: observe maximum load $\rightarrow \square$ 17
- 3 Transmitter

- 14 Connection example for 4-20 mA current output (passive)
- 1 Automation system with current input (e.g. PLC)
- 2 Active barrier for power supply (e.g. RN221N)
- 4 Transmitter


Pulse/frequency output

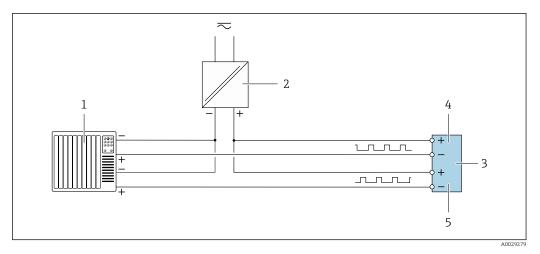
■ 15 Connection example for pulse/frequency output (passive)

- Automation system with pulse/frequency input (e.g. PLC with 10 kΩ pull-up or pull-down resistor)
- 2 Power supply
- *3 Transmitter: observe input values* $\rightarrow \triangle$ *20*


Switch output

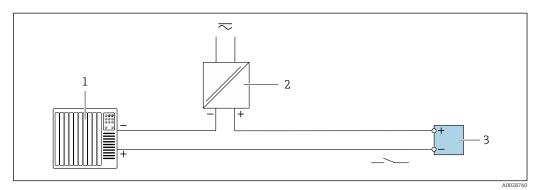
■ 16 Connection example for switch output (passive)

- Automation system with switch input (e.g. PLC with a 10 kΩ pull-up or pull-down resistor)
- 2 Power supply
- 3 Transmitter: observe input values $\rightarrow \triangleq 20$


Double pulse output

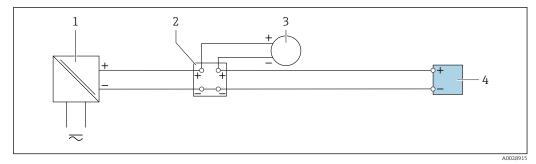
■ 17 Connection example for double pulse output (active)

- 1 Automation system with double pulse input (e.g. PLC)
- 2 Transmitter: observe input values → 🗎 22
- 3 Double pulse output
- 4 Double pulse output (slave), phase-shifted


49

■ 18 Connection example for double pulse output (passive)

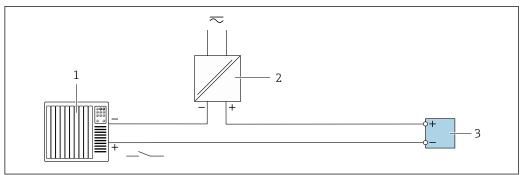
- 1 Automation system with double pulse input (e.g. PLC with a 10 $k\Omega$ pull-up or pull-down resistor)
- 2 Power supply
- 4 Double pulse output
- 5 Double pulse output (slave), phase-shifted


Relay output

■ 19 Connection example for relay output (passive)

- 1 Automation system with relay input (e.g. PLC)
- 2 Power supply
- 3 Transmitter: observe input values $\rightarrow \triangleq 22$

Current input



 \blacksquare 20 Connection example for 4 to 20 mA current input

- 1 Power supply
- 2 Terminal box
- 3 External measuring device (to read in pressure or temperature, for instance)
- 4 Transmitter

50

Status input

A0028764

■ 21 Connection example for status input

- 1 Automation system with status output (e.g. PLC)
- 2 Power supply
- 3 Transmitter

Potential equalization

Requirements

For potential equalization:

- Pay attention to in-house grounding concepts
- Take account of operating conditions like the pipe material and grounding
- Connect the medium, sensor and transmitter to the same electrical potential
- Use a ground cable with a minimum cross-section of 6 mm² (0.0093 in²) and a cable lug for potential equalization connections

For devices intended for use in hazardous locations, please observe the guidelines in the Ex documentation (XA).

Terminals

Spring-loaded terminals: Suitable for strands and strands with ferrules. Conductor cross-section 0.2 to $2.5~\mathrm{mm}^2$ (24 to $12~\mathrm{AWG}$).

Cable entries

- Cable gland: M20 × 1.5 with cable Ø 6 to 12 mm (0.24 to 0.47 in)
- Thread for cable entry:
 - NPT ½"
 - G ½"
 - M20
- Device plug for connecting cable: M12
 A device plug is always used for the device version with the order code for "Sensor connection housing", option C "Ultra-compact, hygienic, stainless".

Cable specification

Permitted temperature range

- The installation guidelines that apply in the country of installation must be observed.
- The cables must be suitable for the minimum and maximum temperatures to be expected.

Power supply cable (incl. conductor for the inner ground terminal)

Standard installation cable is sufficient.

Protective grounding cable for the outer ground terminal

Conductor cross-section $< 2.1 \text{ mm}^2 \text{ (14 AWG)}$

The use of a cable lug enables the connection of larger cross-sections.

The grounding impedance must be less than 2 Ω .

Signal cable

Current output 4 to 20 mA HART

A shielded cable is recommended. Observe grounding concept of the plant.

PROFIBUS PA

Twisted, shielded two-wire cable. Cable type A is recommended.

For further information on planning and installing PROFIBUS networks see:

- Operating Instructions "PROFIBUS DP/PA: Guidelines for planning and commissioning" (BA00034S)
- PNO Directive 2.092 "PROFIBUS PA User and Installation Guideline"
- IEC 61158-2 (MBP)

PROFIBUS DP

The IEC 61158 standard specifies two types of cable (A and B) for the bus line which can be used for every transmission rate. Cable type A is recommended.

Cable type	A	
Characteristic impedance	135 to 165 Ω at a measuring frequency of 3 to 20 MHz	
Cable capacitance	< 30 pF/m	
Wire cross-section	> 0.34 mm ² (22 AWG)	
Cable type	Twisted pairs	
Loop resistance	≤110 Ω/km	
Signal damping	Max. 9 dB over the entire length of the cable cross-section	
Shield	Copper braided shielding or braided shielding with foil shield. When grounding the cable shield, observe the grounding concept of the plant.	

For further information on planning and installing PROFIBUS networks see:

- Operating Instructions "PROFIBUS DP/PA: Guidelines for planning and commissioning" (BA00034S)
- PNO Directive 2.092 "PROFIBUS PA User and Installation Guideline"
- IEC 61158-2 (MBP)

EtherNet/IP

The standard ANSI/TIA/EIA-568-B.2 Annex specifies CAT 5 as the minimum category for a cable used for EtherNet/IP. CAT 5e and CAT 6 are recommended.

For more information on planning and installing EtherNet/IP networks, please refer to the "Media Planning and Installation Manual. EtherNet/IP" of ODVA Organization

PROFINET

Standard IEC 61156-6 specifies CAT 5 as the minimum category for a cable used for PROFINET. CAT 5e and CAT 6 are recommended.

For more information on planning and installing PROFINET networks, see: "PROFINET Cabling and Interconnection Technology", Guideline for PROFINET

PROFINET with Ethernet-APL

The reference cable type for APL segments is fieldbus cable type A, MAU type 1 and 3 (specified in IEC 61158-2). This cable meets the requirements for intrinsically safe applications according to IEC TS 60079-47 and can also be used in non-intrinsically safe applications.

Cable type	A
Cable capacitance	45 to 200 nF/km
Loop resistance	15 to 150 Ω/km
Cable inductance	0.4 to 1 mH/km

Further details are provided in the Ethernet-APL Engineering Guideline

FOUNDATION Fieldbus

Twisted, shielded two-wire cable.

For further information on planning and installing FOUNDATION Fieldbus networks see:

- Operating Instructions for "FOUNDATION Fieldbus Overview" (BA00013S)
- FOUNDATION Fieldbus Guideline
- IEC 61158-2 (MBP)

Modbus RS485

The EIA/TIA-485 standard specifies two types of cable (A and B) for the bus line which can be used for every transmission rate. Cable type A is recommended.

Cable type	A	
Characteristic impedance	135 to 165 Ω at a measuring frequency of 3 to 20 MHz	
Cable capacitance	< 30 pF/m	
Wire cross-section	> 0.34 mm ² (22 AWG)	
Cable type	Twisted pairs	
Loop resistance	≤110 Ω/km	
Signal damping	Max. 9 dB over the entire length of the cable cross-section	
Shield	Copper braided shielding or braided shielding with foil shield. When grounding the cable shield, observe the grounding concept of the plant.	

Current output 0/4 to 20 mA

Standard installation cable is sufficient

Pulse /frequency /switch output

Standard installation cable is sufficient

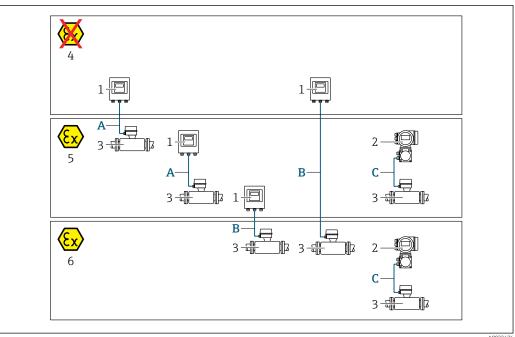
Double pulse output

Standard installation cable is sufficient

Relay output

Standard installation cable is sufficient.

Current input 0/4 to 20 mA


Standard installation cable is sufficient

Status input

Standard installation cable is sufficient

Choice of connecting cable between the transmitter and sensor

Depends on the type of transmitter and the installation zones

- Proline 500 digital transmitter 1
- Proline 500 transmitter 2
- 3 Sensor Cubemass
- Non-hazardous area
- 5 Hazardous area: Zone 2; Class I, Division 2
- Hazardous area: Zone 1; Class I, Division 1 6
- Standard cable to 500 digital transmitter $\rightarrow \implies 54$ Transmitter installed in the non-hazardous area or hazardous area: Zone 2; Class I, Division 2 / sensor installed in the hazardous area: Zone 2; Class I, Division 2
- Standard cable to 500 digital transmitter $\rightarrow \implies 55$ В Transmitter installed in the hazardous area: Zone 2; Class I, Division 2 / sensor installed in the hazardous area: Zone 1; Class I, Division 1
- Signal cable to 500 transmitter $\rightarrow \implies 57$ Transmitter and sensor installed in the hazardous area: Zone 2; Class I, Division 2 or Zone 1; Class I, Division 1

A: Connecting cable between sensor and transmitter: Proline 500 – digital

Standard cable

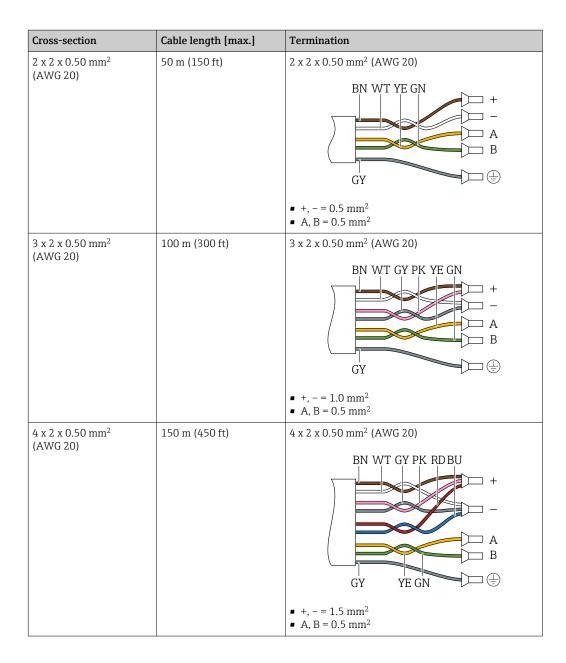
A standard cable with the following specifications can be used as the connecting cable.

Design	4 cores (2 pairs); uninsulated stranded CU wires; pair-stranded with common shield	
Shielding	Tin-plated copper braid, optical cover \geq 85 %	
Loop resistance	Power supply line (+, -): maximum 10 Ω	
Cable length	Maximum 300 m (900 ft), see the following table.	

Cross-section	Cable length [max.]
0.34 mm ² (AWG 22)	80 m (240 ft)
0.50 mm ² (AWG 20)	120 m (360 ft)
0.75 mm ² (AWG 18)	180 m (540 ft)
1.00 mm ² (AWG 17)	240 m (720 ft)
1.50 mm ² (AWG 15)	300 m (900 ft)

Optionally available connecting cable

Design	$2 \times 2 \times 0.34~\text{mm}^2$ (AWG 22) PVC cable $^{1)}$ with common shield (2 pairs, uninsulated stranded CU wires; pair-stranded)
Flame resistance	According to DIN EN 60332-1-2
Oil-resistance	According to DIN EN 60811-2-1
Shielding	Tin-plated copper braid, optical cover ≥ 85 %
Operating temperature	When mounted in a fixed position: -50 to $+105$ °C (-58 to $+221$ °F); when cable can move freely: -25 to $+105$ °C (-13 to $+221$ °F)
Available cable length	Fixed: 20 m (60 ft); variable: up to maximum 50 m (150 ft)


1) UV radiation can impair the cable outer sheath. Protect the cable from direct sunshine where possible.

B: Connecting cable between sensor and transmitter: Proline 500 - digital

Standard cable

A standard cable with the following specifications can be used as the connecting cable.

Design	4, 6, 8 cores (2, 3, 4 pairs); uninsulated stranded CU wires; pair-stranded with common shield	
Shielding	Tin-plated copper braid, optical cover \geq 85 %	
Capacitance C	Maximum 760 nF IIC, maximum 4.2 μF IIB	
Inductance L	Maximum 26 μH IIC, maximum 104 μH IIB	
Inductance/resistance ratio (L/R)	Maximum 8.9 $\mu H/\Omega$ IIC, maximum 35.6 $\mu H/\Omega$ IIB (e.g. according to IEC 60079-25)	
Loop resistance	Power supply line (+, –): maximum 5 Ω	
Cable length	Maximum 150 m (450 ft), see the following table.	

Optionally available connecting cable

Connecting cable for	Zone 1; Class I, Division 1
Standard cable	$2\times2\times0.5~\text{mm}^2$ (AWG 20) PVC cable $^{1)}$ with common shield (2 pairs, pair-stranded)
Flame resistance	According to DIN EN 60332-1-2
Oil-resistance	According to DIN EN 60811-2-1
Shielding	Tin-plated copper braid, optical cover ≥ 85 %
Operating temperature	When mounted in a fixed position: -50 to $+105$ °C (-58 to $+221$ °F); when cable can move freely: -25 to $+105$ °C (-13 to $+221$ °F)
Available cable length	Fixed: 20 m (60 ft); variable: up to maximum 50 m (150 ft)

1) UV radiation can impair the cable outer sheath. Protect the cable from direct sunshine where possible.

C: Connecting cable between sensor and transmitter: Proline 500

Design	$6\times0.38\ mm^2$ PVC cable $^{1)}$ with individual shielded cores and common copper shield
Conductor resistance	\leq 50 Ω /km (0.015 Ω /ft)
Capacitance: core/shield	≤ 420 pF/m (128 pF/ft)
Cable length (max.)	20 m (60 ft)
Cable lengths (available for order)	5 m (15 ft), 10 m (30 ft), 20 m (60 ft)
Cable diameter	11 mm (0.43 in) ± 0.5 mm (0.02 in)
Continuous operating temperature	Max. 105 °C (221 °F)

 $UV\ radiation\ can impair\ the\ cable\ outer\ sheath.\ Protect\ the\ cable\ from\ direct\ sunshine\ where\ possible.$ 1)

Overvoltage protection

Mains voltage fluctuations	→ 🖺 38	
Overvoltage category	Overvoltage category II	
Short-term, temporary overvoltage	Up to 1200 V between cable and ground, for max. 5 s	
Long-term, temporary overvoltage	Up to 500 V between cable and ground	

Performance characteristics

Reference operating conditions

- Error limits based on ISO 11631
- Water with +15 to +45 $^{\circ}$ C (+59 to +113 $^{\circ}$ F) at 2 to 6 bar (29 to 87 psi)
- Specifications as per calibration protocol
- Accuracy based on accredited calibration rigs that are traced to ISO 17025.

Maximum measured error

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Base accuracy

Page Design fundamentals → 🖺 60

Mass flow and volume flow (liquids)

±0.10 % o.r.

Mass flow (gases)

±0.50 % o.r.

Density (liquids)

Under reference conditions	Standard density calibration 1)	Wide-range Density specification ^{2) 3)}
[g/cm³]	[g/cm³]	[g/cm³]
±0.0005	±0.02	±0.002

- 1) Valid over the entire temperature and density range
- Valid range for special density calibration: 0 to 2 g/cm³, +5 to +80 $^{\circ}$ C (+41 to +176 $^{\circ}$ F)
- order code for "Application package", option EE "Special density"

Temperature

 $\pm 0.5 \,^{\circ}\text{C} \pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.9 \,^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Zero point stability

DN		Zero point stability		
[mm] [in]		[kg/h]	[lb/min]	
1	1/24	0.0008	0.00003	
2	1/12	0.002	0.00007	
4	1/8	0.014	0.0005	
6	1/4	0.02	0.0007	

Flow values

Flow values as turndown parameters depending on the nominal diameter.

SI units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
1	20	2	1	0.4	0.2	0.04
2	100	10	5	2	1	0.2
4	450	45	22.5	9	4.5	0.9
6	1000	100	50	20	10	2

US units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
1/24	0.735	0.074	0.037	0.015	0.007	0.001
1/12	3.675	0.368	0.184	0.074	0.037	0.007
1/8	16.54	1.654	0.827	0.331	0.165	0.033
1/4	36.75	3.675	1.838	0.735	0.368	0.074

Accuracy of outputs

The outputs have the following base accuracy specifications.

Current output

Accuracy	±5 μA
----------	-------

Pulse/frequency output

o.r. = of reading

Accuracy	Max. ±50 ppm o.r. (over the entire ambient temperature range)
----------	---

Repeatability

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Base repeatability

Design fundamentals $\rightarrow \triangleq 60$

Mass flow and volume flow (liquids)

±0.05 % o.r.

Mass flow (gases)

±0.25 % o.r.

Density (liquids)

 $\pm 0.00025 \text{ g/cm}^3$

Temperature

 $\pm 0.25 \,^{\circ}\text{C} \pm 0.0025 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.45 \,^{\circ}\text{F} \pm 0.0015 \cdot (\text{T}-32) \,^{\circ}\text{F})$

Response time

The response time depends on the configuration (damping).

Influence of ambient temperature

Current output

Temperature coefficient	Max. 1 μA/°C
-------------------------	--------------

Pulse/frequency output

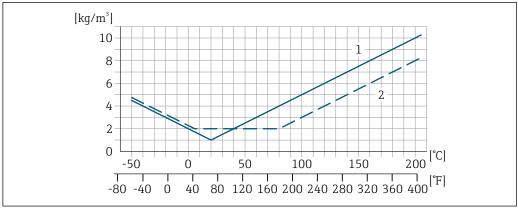
Temperature coefficient	No additional effect. Included in accuracy.
-------------------------	---

Influence of medium temperature

Mass flow and volume flow

o.f.s. = of full scale value

If there is a difference between the temperature during zero adjustment and the process temperature, the additional measured error of the sensors is typically ± 0.0002 %o.f.s./°C (± 0.0001 % o.f.s./°F).


The influence is reduced when the zero adjustment is performed at process temperature.

Density

If there is a difference between the density calibration temperature and the process temperature, the measured error of the sensors is typically ± 0.00005 g/cm³/°C (± 0.000025 g/cm³/°F). Field density adjustment is possible.

Wide-range density specification (special density calibration)

If the process temperature is outside the valid range ($\Rightarrow \ \cong \ 57$) the measured error is $\pm 0.00005 \ g/cm^3$ /°C ($\pm 0.000025 \ g/cm^3$ /°F)

- 1 Field density adjustment, for example at $+20 \,^{\circ}\text{C}$ ($+68 \,^{\circ}\text{F}$)
- 2 Special density calibration

Temperature

 $\pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.005 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Influence of medium pressure

The tables below show the effect that a difference in pressure between the calibration pressure and the process pressure has on the accuracy in the case of the mass flow and density.

o.r. = of reading

It is possible to compensate for the effect by:

- Reading in the current pressure measured value via the current input or a digital input.
- Specifying a fixed value for the pressure in the device parameters.

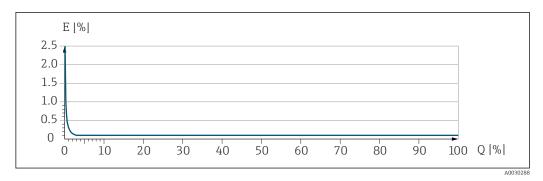
DN		[% o.r./bar]	[% o.r./psi]
[mm]	[in]		
1	1/24	-0.001	-0.00007
2	1/12	0	0
4	1/8	-0.005	-0.0004
6	1/4	-0.003	-0.0002

Design fundamentals

o.r. = of reading, o.f.s. = of full scale value

BaseAccu = base accuracy in % o.r., BaseRepeat = base repeatability in % o.r.

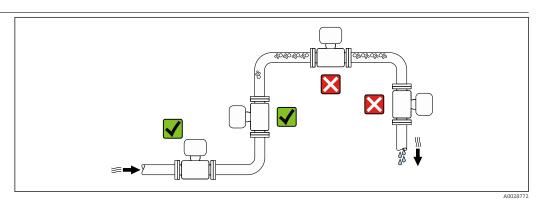
MeasValue = measured value; ZeroPoint = zero point stability


Calculation of the maximum measured error as a function of the flow rate

Flow rate	Maximum measured error in % o.r.
$\geq \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± BaseAccu
A0021332	
$< \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± ZeroPoint MeasValue · 100
A0021333	A0021334

Calculation of the maximum repeatability as a function of the flow rate

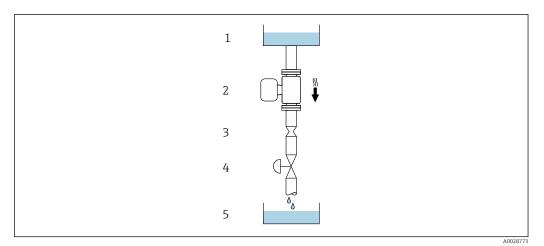
Flow rate	Maximum repeatability in % o.r.
$\geq \frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	± BaseRepeat
A0021335	1002270
$<\frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	$\pm \frac{1}{2} \cdot \frac{\text{ZeroPoint}}{\text{MeasValue}} \cdot 100$
A0021336	A0021337


Example of maximum measured error

- E Maximum measured error in % o.r. (example)
- Q Flow rate in % of maximum full scale value

Installation

Mounting location



To prevent measuring errors arising from accumulation of gas bubbles in the measuring pipe, avoid the following mounting locations in the piping:

- Highest point of a pipeline.
- Directly upstream of a free pipe outlet in a down pipe.

Installation in down pipes

However, the following installation suggestion allows for installation in an open vertical pipeline. Pipe restrictions or the use of an orifice with a smaller cross-section than the nominal diameter prevent the sensor running empty while measurement is in progress.

22 Installation in a down pipe (e.g. for batching applications)

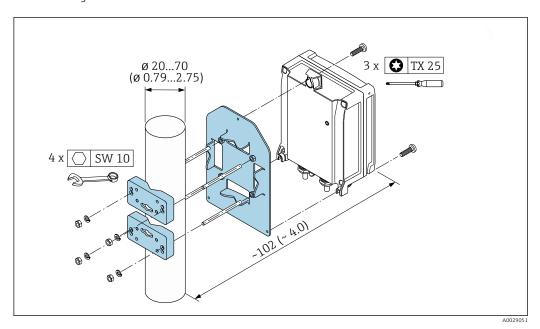
- 1 Supply tank
- 2 Sensor
- 3 Orifice plate, pipe restriction
- 4 Valve
- 5 Batching tank

DN		Ø orifice plate, pipe restriction	
[mm]	[in]	[mm]	[in]
1	1/24	0.8	0.03
2	1/12	1.5	0.06
4	1/8	3.0	0.12
6	1/4	5.0	0.20

Orientation

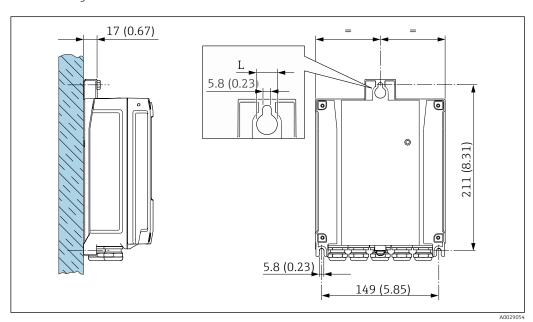
The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

	Recommendation		
A	Vertical orientation	A0015591	 ✓
В	Horizontal orientation, transmitter at top	A0015589	√ ✓ 1)
С	Horizontal orientation, transmitter at bottom	A0015590	✓ ✓ ²⁾
D	Horizontal orientation, transmitter at side	A0015592	×


- Applications with low process temperatures may reduce the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.
- 2) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.

Inlet and outlet runs

Mounting the transmitter housing


Proline 500 - digital transmitter

Post mounting

■ 23 Engineering unit mm (in)

Wall mounting

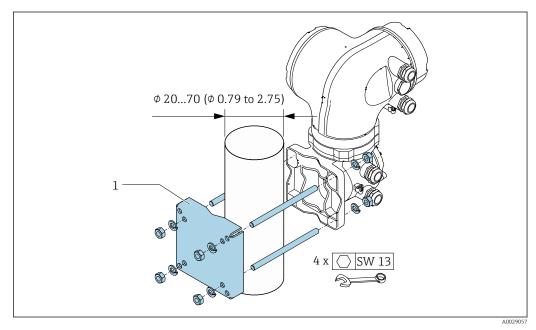
■ 24 Engineering unit mm (in)

L Depends on order code for "Transmitter housing"

Order code for "Transmitter housing"

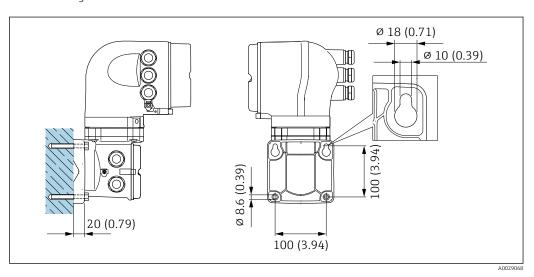
- Option **A**, aluminum, coated: L = 14 mm (0.55 in)
- Option **D**, polycarbonate: L = 13 mm (0.51 in)

Proline 500 transmitter


Post mounting

A WARNING

Order code for "Transmitter housing", option L "Cast, stainless": cast transmitters are very heavy.


They are unstable if they are not mounted on a secure, fixed post.

▶ Only mount the transmitter on a secure, fixed post on a stable surface.

■ 25 Engineering unit mm (in)

Wall mounting

■ 26 Engineering unit mm (in)

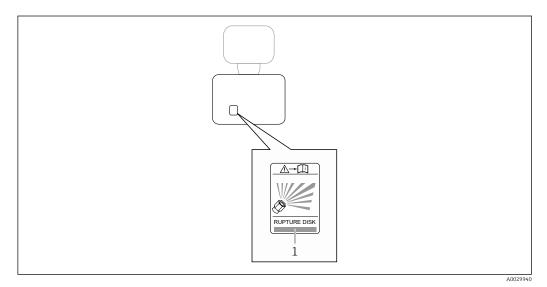
Special mounting instructions

Hygienic compatibility

When installing in hygienic applications, please refer to the information in the "Certificates and approvals/hygienic compatibility" section

Rupture disk

Process-related information: $\rightarrow \blacksquare 71$.


A WARNING

Danger from medium escaping!

Medium escaping under pressure can cause injury or material damage.

- ▶ Take precautions to prevent danger to persons and damage if the rupture disk is actuated.
- ▶ Observe the information on the rupture disk sticker.
- ► Make sure that the function and operation of the rupture disk is not impeded through the installation of the device.
- Do not use a heating jacket.
- ▶ Do not remove or damage the rupture disk.

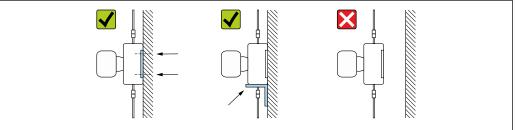
The position of the rupture disk is indicated by a sticker affixed beside it.

Rupture disk label

Wall mounting

A WARNING

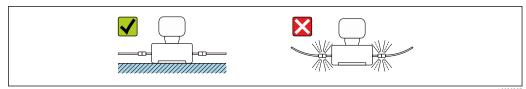
Incorrect sensor mounting


Risk of injury if measuring tube breaks

- ▶ The sensor should never be installed in a pipe in a way that it is freely suspended
- ▶ Using the base plate, mount the sensor directly on the floor, wall or ceiling.
- ► Support the sensor on a securely mounted support base (e.g. angle bracket).

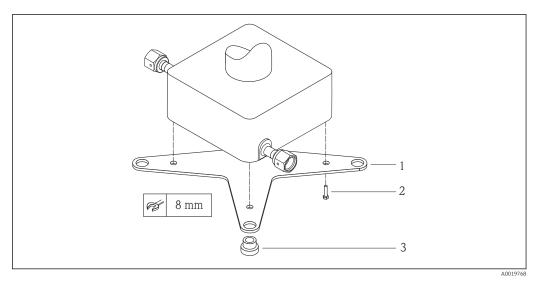
The following mounting versions are recommended for the installation.

Vertical


- $\mbox{\ \ \blacksquare\ }$ Mounted directly on a wall using the base plate, or
- Device supported on an angle bracket mounted on the wall

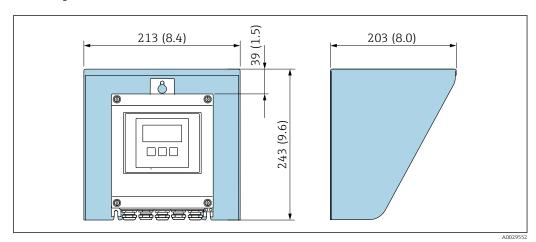
A0030286

Horizontal


Device standing on a solid support base

A003028

Mounting plate


The universal mounting plate can be used to affix or place the unit on a flat surface (order code for "Accessories", option PA).

■ 27 Mounting kit for Cubemass mounting plate

- 1 1 x Cubemass mounting plate
- 2 4 x screw M5 x 8
- 3 4 x grommet

Weather protection cover

■ 28 Weather protection cover for Proline 500 – digital; engineering unit mm (in)

66

Weather protection cover for Proline 500; engineering unit mm (in)

Environment

Ambient temperature range

Measuring device	 -40 to +60 °C (-40 to +140 °F) Order code for "Test, certificate", option JP: -50 to +60 °C (-58 to +140 °F)
Readability of the local display	-20 to $+60$ °C (-4 to $+140$ °F) The readability of the display may be impaired at temperatures outside the temperature range.

- Dependency of ambient temperature on medium temperature $\rightarrow \triangleq 68$
- If operating outdoors: Avoid direct sunlight, particularly in warm climatic regions.

-50 to +80 °C (-58 to +176 °F)
DIN EN 60068-2-38 (test Z/AD)
The device is suitable for use in outdoor and indoor areas with a relative humidity of 4 to 95%.
According to EN 61010-1 ■ ≤ 2 000 m (6 562 ft)
Transmitter ■ IP66/67, Type 4X enclosure, suitable for pollution degree 4

- When the housing is open: IP20, Type 1 enclosure, suitable for pollution degree 2
- Display module: IP20, Type 1 enclosure, suitable for pollution degree 2

- IP66/67, Type 4X enclosure, suitable for pollution degree 4
- When the housing is open: IP20, Type 1 enclosure, suitable for pollution degree 2

Optional

External WLAN antenna

IP67

Vibration- and shock-resistance

Vibration sinusoidal, in accordance with IEC 60068-2-6

Sensor

- 2 to 8.4 Hz, 3.5 mm peak
- 8.4 to 2000 Hz, 1 g peak

Transmitter

- **2** to 8.4 Hz, 7.5 mm peak
- 8.4 to 2000 Hz, 2 g peak

Vibration broad-band random, according to IEC 60068-2-64

Sensor

- 10 to 200 Hz, 0.003 g²/Hz
- 200 to 2000 Hz, 0.001 q²/Hz
- Total: 1.54 g rms

Transmitter

- 10 to 200 Hz, $0.01 \text{ g}^2/\text{Hz}$
- 200 to 2000 Hz, 0.003 g²/Hz
- Total: 2.70 g rms

Shock half-sine, according to IEC 60068-2-27

- Sensor
 - 6 ms 30 g
- Transmitter 6 ms 50 g

Rough handling shocks, according to IEC 60068-2-31

Interior cleaning

- Cleaning in place (CIP)
- Sterilization in place (SIP)

Options

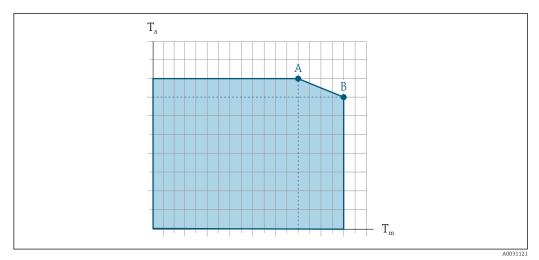
Oil- and grease-free version for wetted parts, without declaration Order code for "Service", option HA

Mechanical load

Transmitter housing and sensor connection housing:

- Protect against mechanical effects, such as shock or impact
- Do not use as a ladder or climbing aid

Electromagnetic compatibility (EMC)


- As per IEC/EN 61326 and NAMUR Recommendation 21 (NE 21)
- Device version with PROFIBUS DP: Complies with emission limits for industry as per EN 50170
 Volume 2, IEC 61784
- The following applies for PROFIBUS DP: If baud rates > 1.5 MBaud, an EMC cable entry must be used and the cable shield must continue as far as the terminal wherever possible.
- Details are provided in the Declaration of Conformity.
- This unit is not intended for use in residential environments and cannot guarantee adequate protection of the radio reception in such environments.

Process

Medium temperature range

-50 to +205 °C (-58 to +401 °F)

Dependency of ambient temperature on medium temperature

■ 30 Exemplary representation, values in the table below.

- T_a Ambient temperature
- T_m Medium temperature
- A Maximum permitted medium temperature T_m at $T_{a max}$ = 60 °C (140 °F); higher medium temperatures T_m require a reduction in the ambient temperature T_a
- B Maximum permitted ambient temperature T_a for the maximum specified medium temperature T_m of the sensor
- Values for devices that are used in the hazardous area: Separate Ex documentation (XA) for the device $\rightarrow \triangleq 115$.

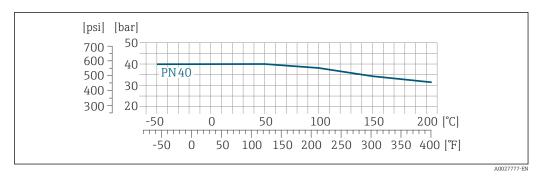
	Not insulated			Insulated				
	A		В		A		В	
Version	Ta	T _m	Ta	T _m	Ta	T_{m}	Ta	T_{m}
Cubemass C 500 – digital	60 °C (140 °F)	205 °C (401 °F)	-	-	60 °C (140 °F)	90 °C (194 °F)	25 °C (77 °F)	205 °C (401 °F)
Cubemass C 500	60 °C (140 °F)	205 °C (401 °F)	-	-	60 °C (140 °F)	160°C (320°F)	55 ℃ (131 ℉)	205 °C (401 °F)

Seals

For mounting sets with screwed-on connections:

- Viton: -15 to +200 °C (-5 to +392 °F)
- EPDM: -40 to +160 °C (-40 to +320 °F)
- Silicone: -60 to +200 °C (-76 to +392 °F)
- Kalrez: -20 to +275 °C (-4 to +527 °F)

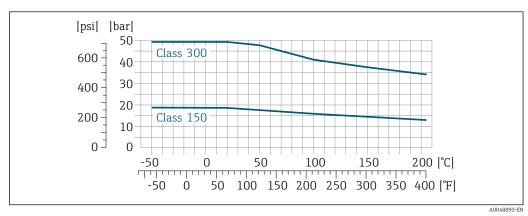
Density


0 to $5\,000\,\text{kg/m}^3$ (0 to $3\,12\,\text{lb/cf}$)

Pressure-temperature ratings

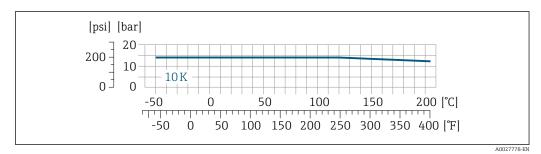
The following pressure/temperature diagrams apply to all pressure-bearing parts of the device and not just the process connection. The diagrams show the maximum permissible medium pressure depending on the specific medium temperature.

Flange connection according to EN 1092-1 (DIN 2501)


Order code for "Mounting kit", option PE

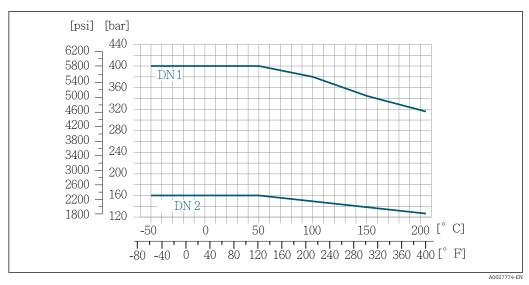
■ 31 With flange material: 1.4539 (904L), Alloy C22; lap joint flanges (not wetted) 1.4404 (316/316L)

Flange connection according to ASME B16.5


Order code for "Mounting kit", option PF, PG

■ 32 With flange material: 1.4539 (904L); lap joint flanges (not wetted) 1.4404 (316/316L)

Flange connection according to JIS B2220


Order code for "Mounting kit", option PH

■ 33 With flange material: 1.4539 (904L); lap joint flanges (not wetted): 1.4404 (316/316L)

Process connection 4-VCO-4, ¼ NPTF (DN 1 to 4); 8-VCO-4, ½ NPTF (DN 6)

Order code for "Mounting kit", option PC, PD

34 4-VCO-4 coupling: 1.4539 (904L); 8-VCO-4 coupling: 1.4539 (904L); NPTF threaded adapter: 1.4539 (904L)

Sensor housing

The sensor housing is filled with dry nitrogen gas and protects the electronics and mechanics inside.

Rupture disk

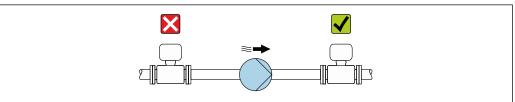
Flow limit

Select the nominal diameter by optimizing between the required flow range and permissible pressure loss.

- For an overview of the full scale values for the measuring range, see the "Measuring range" section $\Rightarrow \ \ \cong \ 12$
- The minimum recommended full scale value is approx. 1/20 of the maximum full scale value
- In most applications, 20 to 50 % of the maximum full scale value can be considered ideal
- A low full scale value must be selected for abrasive media (such as liquids with entrained solids): flow velocity < 1 m/s (< 3 ft/s).
- For gas measurement the following rules apply:
 - The flow velocity in the measuring tubes should not exceed half the sound velocity (0.5 Mach).
 - The maximum mass flow depends on the density of the gas: formula
- To calculate the flow limit, use the *Applicator* sizing tool $\Rightarrow riangleq 114$

Pressure loss

i


To calculate the pressure loss, use the Applicator sizing tool $\rightarrow~\cong~114$

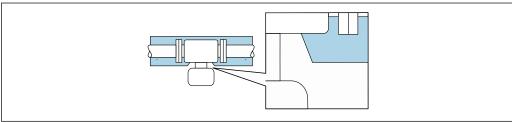
System pressure

It is important that cavitation does not occur, or that gases entrained in the liquids do not outgas. This is prevented by means of a sufficiently high system pressure.

For this reason, the following mounting locations are recommended:

- At the lowest point in a vertical pipe
- Downstream from pumps (no danger of vacuum)

A002877


Thermal insulation

In the case of some fluids, it is important to keep the heat radiated from the sensor to the transmitter to a low level. A wide range of materials can be used for the required insulation.

NOTICE

Electronics overheating on account of thermal insulation!

- Recommended orientation: horizontal orientation, sensor connection housing pointing downwards.
- ▶ Do not insulate the sensor connection housing.
- ► Maximum permissible temperature at the lower end of the sensor connection housing: 80 °C (176 °F)
- ► Thermal insulation with not isolated extended neck: We recommend that you do not insulate the extended neck in order to ensure optimum dissipation of heat.

■ 35 Thermal insulation with not isolated extended neck

A0034391

Heating

Some fluids require suitable measures to avoid loss of heat at the sensor.

Heating options

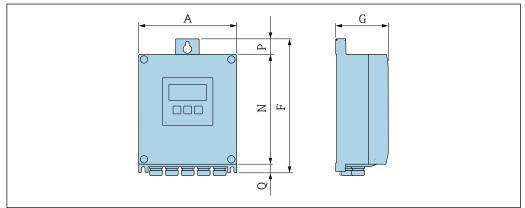
- Electrical heating, e.g. with electric band heaters ¹⁾
- Via pipes carrying hot water or steam
- Via heating jackets

NOTICE

Danger of overheating when heating

- ► Ensure that the temperature at the lower end of the transmitter housing does not exceed 80 °C (176 °F)
- Ensure that sufficient convection takes place at the transmitter neck.
- ► Ensure that a sufficiently large area of the transmitter neck remains exposed. The uncovered part serves as a radiator and protects the electronics from overheating and excessive cooling.
- When using in potentially explosive atmospheres, observe the information in the device-specific Ex documentation. For detailed information on the temperature tables, see the separate document entitled "Safety Instructions" (XA) for the device.

Vibrations


The high oscillation frequency of the measuring tubes ensures that the correct operation of the measuring system is not influenced by plant vibrations.

Mechanical construction

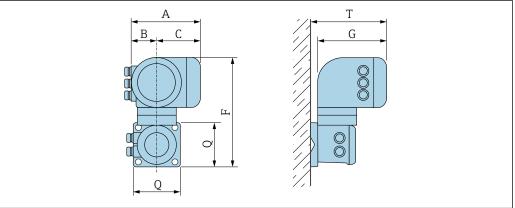
Dimensions in SI units

Housing of Proline 500 - digital transmitter

Non-hazardous area or hazardous area: Zone 2; Class I, Division 2

A0033789

Order code for "Transmitter housing", option A "Aluminum, coated" and order code for "Integrated ISEM electronics", option A "Sensor"


A	F	G	N	P	Q
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
167	232	89	187	24	

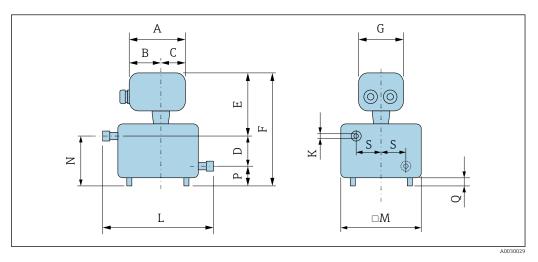
 $\label{lem:code_for_policy} \textit{Order code for "Transmitter housing", option D "Polycarbonate" and order code for "Integrated ISEM electronics", option A "Sensor"$

A	F	G	N	P	Q
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
177	234	89	197	17	

Housing of Proline 500 transmitter

Hazardous area: Zone 2; Class I, Division 2 or Zone 1; Class I, Division 1

A0033788


Order code for "Transmitter housing", option A "Aluminum, coated" and order code for "Integrated ISEM electronics", option B "Transmitter"

A	B	C	F	G	Q	T
[mm]						
188	85	103	318	217	130	

 $\label{lem:code_for_problem} \textit{Order code for "Transmitter housing", option L "Cast, stainless" and order code for "Integrated ISEM electronics", option B "Transmitter"$

A	B	C	F	G	Q	T
[mm]						
188	85	103	295	217	130	

Sensor connection housing

D K P S L DN M N Q [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 1 30 1.4 121 52 22 10 42.9 175 2 30 2.5 121 52 22 10 42.9 175 4 30 3.9 121 52 22 10 42.9 175 30 5.35 121 52 22 10 175 6 42.9

Order code for "Sensor connection housing", option A "Aluminum, coated"

DN	A 1)	B 1)	С	E	F	G
[mm]						
16	148	94	54	162	214	136

1) Depending on the cable gland used: values up to + 30 in

Order code for "Sensor connection housing", option B "Stainless, hygienic"

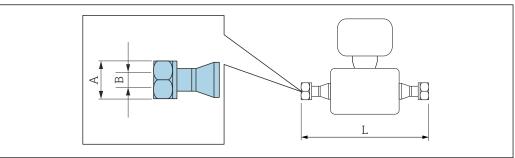
DN	A 1)	В	С	Е	F	G
[mm]						
16	137	78	59	158	210	134

1) Depending on the cable gland used: values up to + 30 in

Order code for "Sensor connection housing", option C "Ultra-compact hygienic, stainless"

DN	A 1)	В	С	Е	F	G
[mm]						
16	124	68	56	157	209	112

1) Depending on the cable gland used: values up to \pm 30 in


Order code for "Sensor connection housing", option L "Cast, stainless"

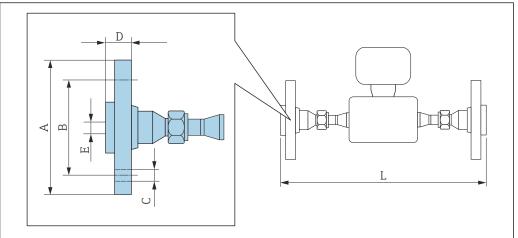
DN	A 1)	В	С	Е	F	G
[mm]						
16	145	86	59	185	237	136

1) Depending on the cable gland used: values up to + 30 in

Couplings

VCO coupling

A0015624


Length tolerance for dimension L in mm: +1.5 / -2.0

4-VCO-4 1.4539 (904L): order code for "Process connection", option HAW							
DN [mm]	A [in]	B [mm]	L [mm]				
1	AF ¹¹ / ₁₆	12.5	175				
2	AF ¹¹ / ₁₆	12.5	175				
4	AF ¹¹ / ₁₆	12.5	175				

8-VCO-4 1.4404 (316/316L): order code for "Process connection", option CVS							
DN [mm]	A [in]	B [mm]	L [mm]				
6	AF 1	20	175				

Adapter

Adapter, DN 15 flange to VCO

A0010725

Length tolerance for dimension L in mm: +1.5 / -2.0

Flange according to EN 1092-1 (DIN 2501): PN 40 1.4539 (904L): order code for "Accessories", option PE							
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]	
1 to 6	95	65	4 × Ø14	28	17.3	278	

DN 1 to 4 with 4-VCO-4, DN 6 with 8-VCO-4

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)

Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)

, ,	Flange according to ASME B16.5: Class 150 1.4539 (904L): order code for "Accessories", option PF							
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]		
1 to 6	90.0	66.5	4 × Ø15.7	17.7	15.7	278		

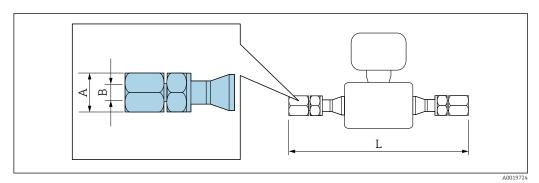
DN 1 to 4 with 4-VCO-4, DN 6 with 8-VCO-4

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)

Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)

Flange according to ASME B16.5: Class 300 1.4539 (904L): order code for "Accessories", option PG								
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]		
1 to 6	95.0	66.5	4 × Ø15.7	20.7	15.7	278		

DN 1 to 4 with 4-VCO-4, DN 6 with 8-VCO-4

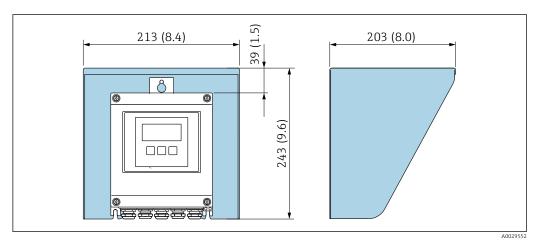

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)

Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)

	Flange JIS B2220: 10K 1.4539 (904L): order code for "Accessories", option PH									
DN A B C D E L [mm] [mm] [mm] [mm] [mm]										
1 to 6	95	70	4 × Ø15	28	15.0	278				

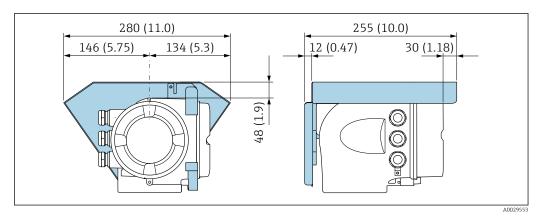
DN 1 to 4 with 4-VCO-4, DN 6 with 8-VCO-4 Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L) Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)

Adapter, NPTF to VCO


Length tolerance for dimension L in mm: +1.5 / -2.0

¹ / ₄ " NPTF to 4-VCO-4 1.4539 (904L): order code for "Accessories", option PC								
DN [mm]	A [in]	B [in]	L [mm]					
1 to 4	AF ¾	½ NPT	246					
Sealing sets: order code for	"Accessory enclosed", option	P1 (Viton), P2 (EPDM), P3 (s	silicone), P4 (Kalrez)					

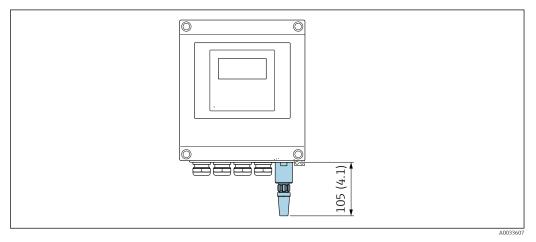
¹ / ₄ " NPTF to 8-VCO-4 1.4539 (904L): order code for "Accessories", option PD							
DN [mm]	A [in]	B [in]	L [mm]				
6	AF ¹¹ / ₁₆	½ NPT	246				
Sealing sets: order code for	"Accessory enclosed", option l	P1 (Viton), P2 (EPDM), P3 (s	ilicone), P4 (Kalrez)				


Accessories

Weather protection cover

■ 36 Weather protection cover for Proline 500 – digital; engineering unit mm (in)

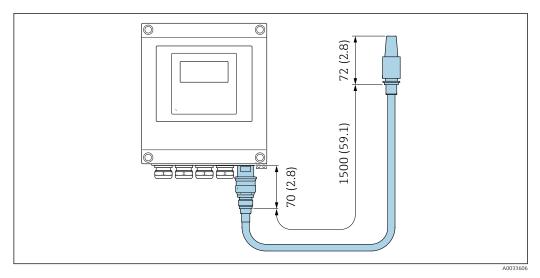
79


■ 37 Weather protection cover for Proline 500; engineering unit mm (in)

External WLAN antenna

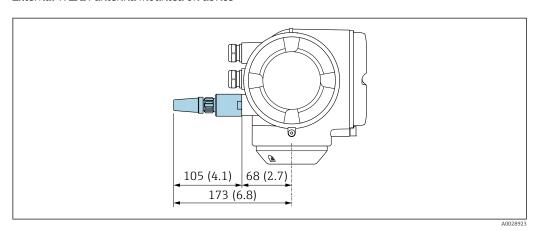
The external WLAN antenna is not suitable for use in hygienic applications.

Proline 500 – digital


External WLAN antenna mounted on device

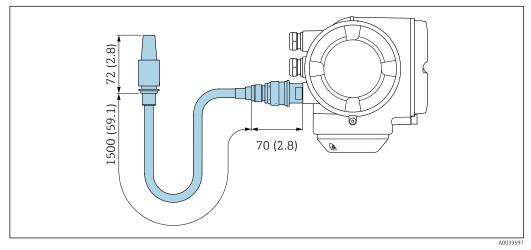
■ 38 Engineering unit mm (in)

External WLAN antenna mounted with cable


The external WLAN antenna can be mounted separately from the transmitter if the transmission/reception conditions at the transmitter mounting location are poor.

■ 39 Engineering unit mm (in)

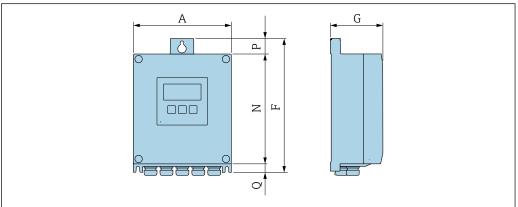
Proline 500


External WLAN antenna mounted on device

🖪 40 Engineering unit mm (in)

External WLAN antenna mounted with cable

The external WLAN antenna can be mounted separately from the transmitter if the transmission/reception conditions at the transmitter mounting location are poor.


■ 41 Engineering unit mm (in)

81

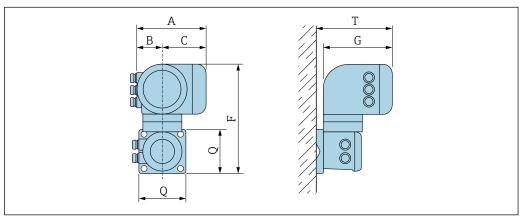
Dimensions in US units

Housing of Proline 500 - digital transmitter

Non-hazardous area or hazardous area: Zone 2; Class I, Division 2

A0033789

Order code for "Transmitter housing", option A "Aluminum, coated" and order code for "Integrated ISEM electronics", option A "Sensor"


A	F	G	N	P	Q
[in]	[in]	[in]	[in]	[in]	[in]
6.57	9.13	3.50	7.36	0.94	

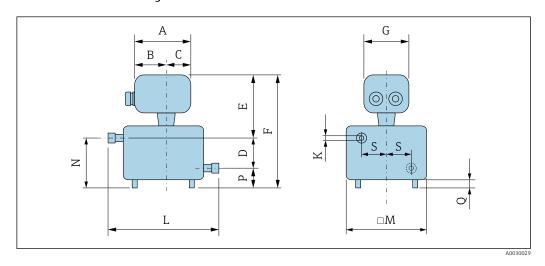
 ${\it Order\ code\ for\ "Transmitter\ housing",\ option\ D\ "Polycarbonate"\ and\ order\ code\ for\ "Integrated\ ISEM\ electronics",\ option\ A\ "Sensor"$

A	F	G	N	P	Q
[in]	[in]	[in]	[in]	[in]	[in]
6.97	9.21	3.50	7.76	0.67	

Housing of Proline 500 transmitter

Hazardous area: Zone 2; Class I, Division 2 or Zone 1; Class I, Division 1

A003378


Order code for "Transmitter housing", option A "Aluminum, coated" and order code for "Integrated ISEM electronics", option B "Transmitter"

A	B	C	F	G	Q	T
[in]						
7.40	3.35	4.06	12.5	8.54	5.12	9.41

 $\label{lem:code} \textit{Order code for "Transmitter housing", option L "Cast, stainless" and order code for "Integrated ISEM electronics", option B "Transmitter"$

A	B	C	F	G	Q	T
[in]						
7.40	3.35	4.06	11.6	8.54	5.12	

Sensor connection housing

DN D K M N P Q S L [in] [in] [in] [in] [in] [in] [in] [in] [in] 1/24 0.06 0.87 1.18 4.76 2.05 0.39 1.69 6.89 1/12 1.18 0.10 4.76 2.05 0.87 0.39 1.69 6.89 1/8 1.18 0.15 4.76 2.05 0.87 0.39 1.69 6.89 1/4 1.18 0.211 4.76 0.87 2.05 0.39 1.69 6.89

Order code for "Sensor connection housing", option A "Aluminum, coated"

DN	A 1)	B 1)	С	E	F	G
[in]	[in]	[in]	[in]	[in]	[in]	[in]
½4 to ½	5.83	3.70	2.13	6.38	8.43	5.35

1) Depending on the cable gland used: values up to +1.18 in

Order code for "Sensor connection housing", option B "Stainless, hygienic"

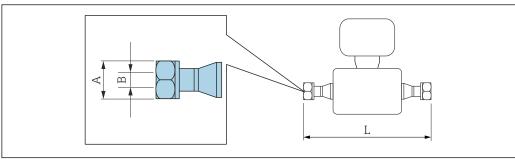
DN	A 1)	В	С	E	F	G
[in]	[in]	[in]	[in]	[in]	[in]	[in]
½4 to ¼	5.39	3.07	2.32	6.22	8.27	5.28

1) Depending on the cable gland used: values up to +1.18 in

Order code for "Sensor connection housing", option C "Ultra-compact hygienic, stainless"

DN	A 1)	В	С	E	F	G
[in]	[in]	[in]	[in]	[in]	[in]	[in]
½4 to ¼	4.88	2.68	2.20	6.18	8.23	4.41

1) Depending on the cable gland used: values up to +1.18 in


Order code for "Sensor connection housing", option L "Cast, stainless"

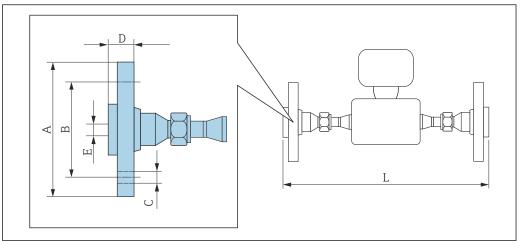
DN	A 1)	В	С	Е	F	G
[in]	[in]	[in]	[in]	[in]	[in]	[in]
½4 to ¼	5.71	3.39	2.32	7.28	9.33	5.35

1) Depending on the cable gland used: values up to +1.18 in

Couplings

VCO coupling

A0015624


Length tolerance for dimension L in inch: +0.06 / -0.08

4-VCO-4 1.4539 (904L): order code for "Process connection", option HAW				
DN [mm]	A [in]	B [in]	L [in]	
1/24	AF ¹¹ / ₁₆	0.49	6.89	
1/12	AF ¹¹ / ₁₆	0.49	6.89	
1/8	AF ¹¹ / ₁₆	0.49	6.89	

8-VCO-4 1.4404 (316/316L): order code for "Process connection", option CVS			
DN A B L [mm] [in] [in]			
1/4	AF 1	0.79	6.89

Adapter

Adapter, DN 15 flange to VCO

A001972

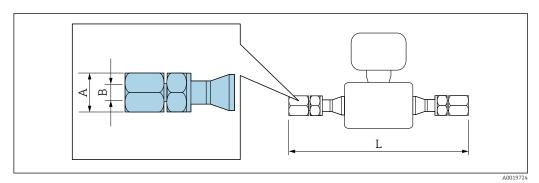
Length tolerance for dimension L in inch: +0.06 / -0.08

Flange according to ASME B16.5: Class 150 1.4539 (904L): order code for "Accessories", option PF						
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]
½4 to ¼	3.54	2.62	4 × Ø0.62	0.7	0.62	10.94

DN $^{1}\!/_{\!24}$ to $^{1}\!/_{\!8}$ with 4-VCO-4, DN $^{1}\!/_{\!4}$ with 8-VCO-4

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)

Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)

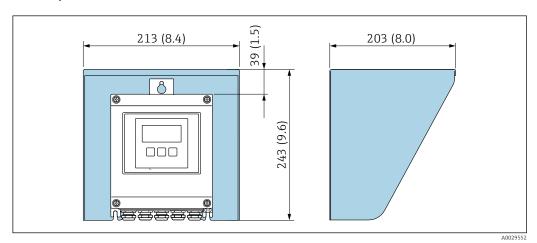

Flange according to ASME B16.5: Class 300 1.4539 (904L): order code for "Accessories, option PG						
DN [in]						
¹ / ₂₄ to ¹ / ₄ 3.74 2.62 4 × Ø0.62 0.81 0.62 10.94						

DN $^1\!/_{\!24}$ to $^1\!/_{\!8}$ with 4-VCO-4, DN $^1\!/_{\!4}$ with 8-VCO-4

Lap joint flanges (not wetted) made of stainless steel 1.4404 (316/316L)

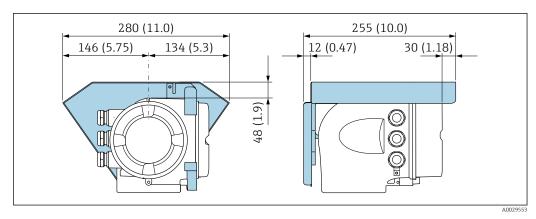
Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)

Adapter, NPTF to VCO


Length tolerance for dimension L in inch: +0.06 / -0.08

¹ / ₄ " NPTF to 4-VCO-4 1.4539 (904L): order code fo	r "Accessories", option PC			
DN [mm]	A [in]	B [in]	L [in]	
¹ / ₂₄ to ¹ / ₈ AF ³ / ₄ NPT 9.69				
Sealing sets: order code for "A	Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)			

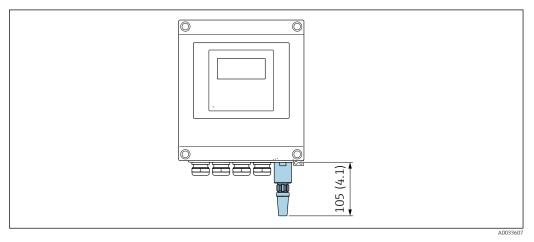
¹ / ₄ " NPTF to 8-VCO-4 1.4539 (904L): order code for "Accessories", option PD				
DN [mm]	A [in]	B [in]	L [in]	
¹ / ₄ AF ¹¹ / ₁₆ ¹ / ₂ NPT 9.69				
Sealing sets: order code for "Accessory enclosed", option P1 (Viton), P2 (EPDM), P3 (silicone), P4 (Kalrez)				


Accessories

Weather protection cover

■ 42 Weather protection cover for Proline 500 – digital; engineering unit mm (in)

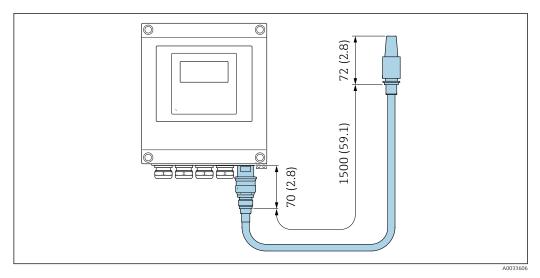
87


■ 43 Weather protection cover for Proline 500; engineering unit mm (in)

External WLAN antenna

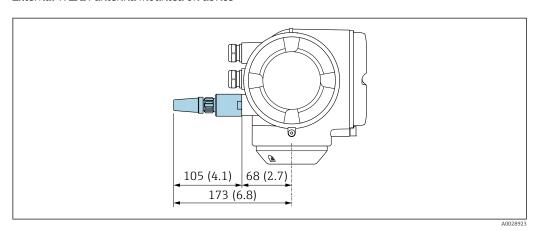
The external WLAN antenna is not suitable for use in hygienic applications.

Proline 500 – digital


External WLAN antenna mounted on device

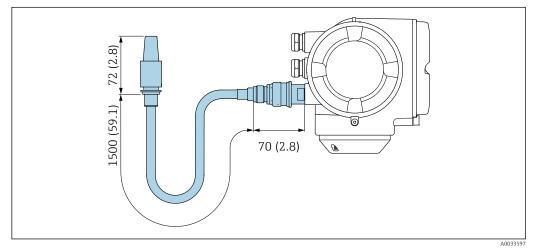
■ 44 Engineering unit mm (in)

External WLAN antenna mounted with cable


The external WLAN antenna can be mounted separately from the transmitter if the transmission/reception conditions at the transmitter mounting location are poor.

■ 45 Engineering unit mm (in)

Proline 500


External WLAN antenna mounted on device

🖪 46 🛮 Engineering unit mm (in)

External WLAN antenna mounted with cable

The external WLAN antenna can be mounted separately from the transmitter if the transmission/reception conditions at the transmitter mounting location are poor.

■ 47 Engineering unit mm (in)

89

Weight

All values (weight exclusive of packaging material) refer to devices with VCO couplings.

Transmitter

- Proline 500 digital polycarbonate: 1.4 kg (3.1 lbs)
- Proline 500 digital aluminum: 2.4 kg (5.3 lbs)
- Proline 500 aluminum: 6.5 kg (14.3 lbs)
- Proline 500 cast, stainless: 15.6 kg (34.4 lbs)

Sensor

- Sensor with cast connection housing version, stainless: +3.7 kg (+8.2 lbs)
- Sensor with aluminum connection housing version:

Weight in SI units

DN [mm]	Weight [kg]
1 to 6	3.5

Weight in US units

DN [in]	Weight [lbs]	
½4 to ¼	8	

Materials

Transmitter housing

Housing of Proline 500 - digital transmitter

Order code for "Transmitter housing":

- Option **A** "Aluminum coated": aluminum, AlSi10Mg, coated
- Option **D** "Polycarbonate": polycarbonate

Housing of Proline 500 transmitter

Order code for "Transmitter housing":

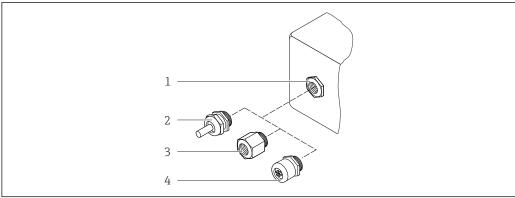
- Option **A** "Aluminum coated": aluminum, AlSi10Mg, coated
- Option L "Cast, stainless": cast, stainless steel, 1.4409 (CF3M) similar to 316L

Window material

Order code for "Transmitter housing":

- Option **A** "Aluminum, coated": glass
- Option **D** "Polycarbonate": plastic
- Option L "Cast, stainless": glass

Fastening components for mounting on a post


- Screws, threaded bolts, washers, nuts: stainless A2 (chrome-nickel steel)
- Metal plates: stainless steel, 1.4301 (304)

Sensor connection housing

Order code for "Sensor connection housing":

- Option A "Aluminum coated": aluminum, AlSi10Mg, coated
- Option **B** "Stainless":
 - Stainless steel 1.4301 (304)
 - Optional: Order code for "Sensor feature", option CC "Hygienic version, for maximum corrosion resistance": stainless steel, 1.4404 (316L)
- Option **C** "Ultra-compact, stainless":
 - Stainless steel 1.4301 (304)
 - Optional: Order code for "Sensor feature", option CC "Hygienic version, for maximum corrosion resistance": stainless steel, 1.4404 (316L)
- $\, \bullet \,$ Option L "Cast, stainless": 1.4409 (CF3M) similar to 316L

Cable entries/cable glands

 \blacksquare 48 Possible cable entries/cable glands

- Female thread M20 \times 1.5
- Cable gland M20 \times 1.5 Adapter for cable entry with female thread G $\frac{1}{2}$ " or NPT $\frac{1}{2}$ " 2 3 4
- Device plug

Cable entries and adapters	Material
Cable gland M20 × 1.5	Plastic
 Adapter for cable entry with female thread G ½" Adapter for cable entry with female thread NPT ½" 	Nickel-plated brass
Only available for certain device versions: Order code for "Transmitter housing": Option A "Aluminum, coated" Option D "Polycarbonate" Order code for "Sensor connection housing": Proline 500 – digital: Option A "Aluminum coated" Option B "Stainless" Option L "Cast, stainless" Option B "Stainless" Option B "Stainless" Option B "Stainless" Option L "Cast, stainless"	
 Adapter for cable entry with female thread G ½" Adapter for cable entry with female thread NPT ½" 	Stainless steel, 1.4404 (316L)
Only available for certain device versions: Order code for "Transmitter housing": Option L "Cast, stainless" Order code for "Sensor connection housing": Option L "Cast, stainless"	
Adapter for device plug	Stainless steel, 1.4404 (316L)
 Device plug for digital communication: Only available for certain device versions → ■ 35. Device plug for connecting cable: A device plug is always used for the device version, order code for "Sensor connection housing", option C (ultracompact, hygienic, stainless). 	

Device plug

Electrical connection	Material
Plug M12x1	 Socket: Stainless steel, 1.4404 (316L) Contact housing: Polyamide Contacts: Gold-plated brass

Connecting cable

UV rays can impair the cable outer sheath. Protect the cable from exposure to sun as much as possible.

Connecting cable for sensor - Proline 500 - digital transmitter

PVC cable with copper shield

Connecting cable for sensor - Proline 500 transmitter

PVC cable with copper shield

Sensor housing

- Acid and alkali-resistant outer surface
- Stainless steel 1.4301 (304)

Measuring tubes

Stainless steel, 1.4539 (904L)

Process connections

VCO connection:

VCO connection: stainless steel, 1.4539 (904L)

Adapter for DN 15 flange according to EN 1092-1 (DIN2501) / according to ASME B 16.5 /

as per JIS B2220:

Stainless steel, 1.4539 (904L)

NPTF adapter:

Stainless steel, 1.4539 (904L)

Available process connections → 🗎 93

Seals

Welded process connections without internal seals

Seals for mounting kit

- Viton
- EPDM
- Silicone
- Kalrez

Accessories

Protective cover

Stainless steel, 1.4404 (316L)

External WLAN antenna

- Antenna: ASA plastic (acrylic ester-styrene-acrylonitrile) and nickel-plated brass
- Adapter: Stainless steel and nickel-plated brass
- Cable: Polyethylene
- Plug: Nickel-plated brass
- Angle bracket: Stainless steel

Process connections

- Fixed flange connections:
 - EN 1092-1 (DIN 2512N) flange
 - ASME B16.5 flange
 - JIS B2220 flange
- VCO connections:
 - 4-VCO-4
 - 8-VCO-4
- Adapter for VCO connections:
 - Flange EN 1092-1 (DIN 2501)
 - Flange ASME B16.5
 - Flange JIS B2220
 - NPT

Process connection materials \rightarrow \triangleq 92

Surface roughness

All data refer to parts in contact with the medium. The following surface roughness categories can be ordered.

Not polished

Operability

Operating concept

Operator-oriented menu structure for user-specific tasks

- Commissioning
- Operation
- Diagnostics
- Expert level

Fast and safe commissioning

- Guided menus ("Make-it-run" wizards) for applications
- Menu guidance with brief descriptions of the individual parameter functions
- Access to the device via Web server
- WLAN access to the device via mobile handheld terminal, tablet or smart phone

Reliable operation

- Operation in local language
- Uniform operating philosophy applied to device and operating tools
- If replacing electronic modules, transfer the device configuration via the integrated memory (HistoROM backup) which contains the process and measuring device data and the event logbook. No need to reconfigure.

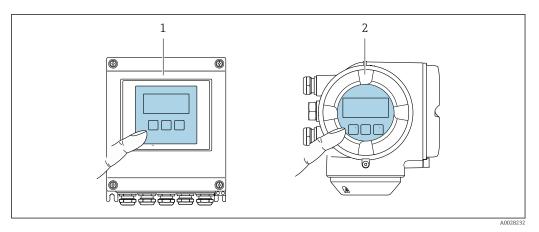
Efficient diagnostic behavior increases measurement availability

- Troubleshooting measures can be called up via the device and in the operating tools
- Diverse simulation options, logbook for events that occur and optional line recorder functions

Languages

Can be operated in the following languages:

- Via local operation
 - English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Turkish, Chinese, Japanese, Korean, Vietnamese, Czech, Swedish
- Via Web browser
 - English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Turkish, Chinese, Japanese, Vietnamese, Czech, Swedish
- Via "FieldCare", "DeviceCare" operating tool: English, German, French, Spanish, Italian, Chinese, Japanese


Local operation

Via display module

Equipment

- Order code for "Display; operation", option F "4-line, illuminated, graphic display; touch control"
- Order code for "Display; operation", option G "4-line, illuminated, graphic display; touch control + WLAN"
- i

Information about WLAN interface → 🖺 100

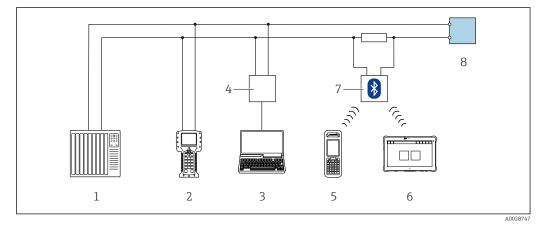
49 Operation with touch control

- 1 Proline 500 digital
- 2 Proline 500

Display elements

- 4-line, illuminated, graphic display
- White background lighting; switches to red in event of device errors
- Format for displaying measured variables and status variables can be individually configured
- Permitted ambient temperature for the display: -20 to +60 °C (-4 to +140 °F)

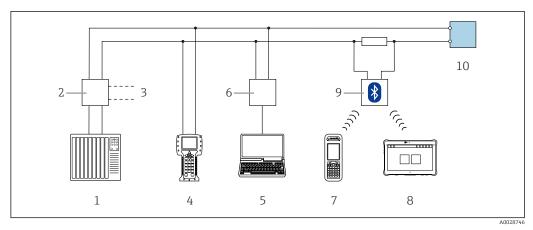
 The readability of the display may be impaired at temperatures outside the temperature range.


Operating elements

- External operation via touch control (3 optical keys) without opening the housing: \boxdot , \Box , \sqsubseteq
- Operating elements also accessible in the various zones of the hazardous area

Remote operation

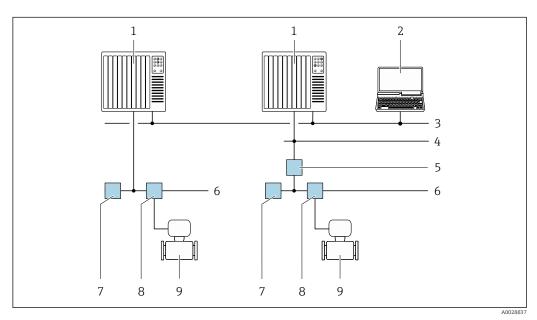
Via HART protocol


This communication interface is available in device versions with a HART output.

 \blacksquare 50 Options for remote operation via HART protocol (active)

- 1 Control system (e.g. PLC)
- 2 Field Communicator 475
- 3 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or computer with operating tool (e.g. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
- 4 Commubox FXA195 (USB)
- 5 Field Xpert SFX350 or SFX370
- 6 Field Xpert SMT70
- 7 VIATOR Bluetooth modem with connecting cable
- 8 Transmitter

94

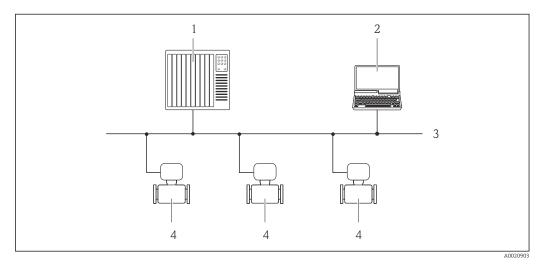


■ 51 Options for remote operation via HART protocol (passive)

- 1 Control system (e.g. PLC)
- 2 Transmitter power supply unit, e.g. RN221N (with communication resistor)
- 3 Connection for Commubox FXA195 and Field Communicator 475
- 4 Field Communicator 475
- 5 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or computer with operating tool (e.g. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
- 6 Commubox FXA195 (USB)
- 7 Field Xpert SFX350 or SFX370
- 8 Field Xpert SMT70
- 9 VIATOR Bluetooth modem with connecting cable
- 10 Transmitter

Via FOUNDATION Fieldbus network

This communication interface is available in device versions with FOUNDATION Fieldbus.

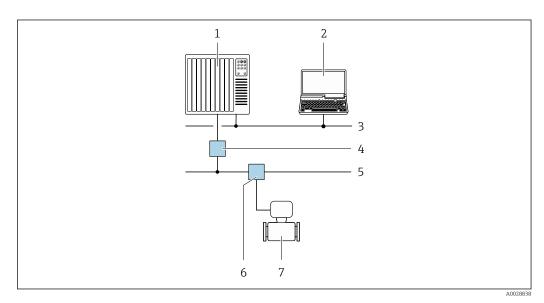


■ 52 Options for remote operation via FOUNDATION Fieldbus network

- 1 Automation system
- 2 Computer with FOUNDATION Fieldbus network card
- 3 Industry network
- 4 High Speed Ethernet FF-HSE network
- 5 Segment coupler FF-HSE/FF-H1
- 6 FOUNDATION Fieldbus FF-H1 network
- 7 Power supply FF-H1 network
- 8 T-box
- 9 Measuring device

Via PROFIBUS DP network

This communication interface is available in device versions with PROFIBUS DP.

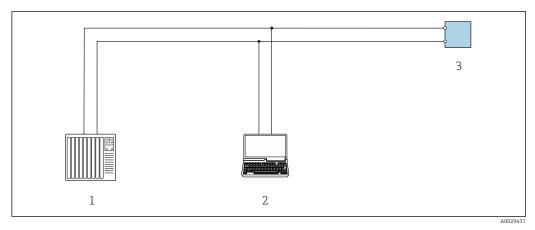


№ 53 Options for remote operation via PROFIBUS DP network

- Automation system
- Computer with PROFIBUS network card 2
- 3 PROFIBUS DP network
- Measuring device

Via PROFIBUS PA network

This communication interface is available in device versions with PROFIBUS PA.

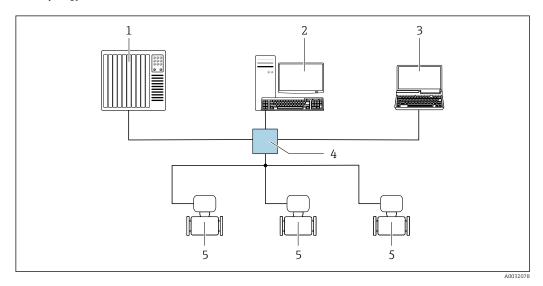

€ 54 Options for remote operation via PROFIBUS PA network

- 1
- Automation system Computer with PROFIBUS network card 2
- 3 PROFIBUS DP network
- Segment coupler PROFIBUS DP/PA
- 5 PROFIBUS PA network
- T-box
- Measuring device

Via Modbus RS485 protocol

This communication interface is available in device versions with a Modbus-RS485 output.

96

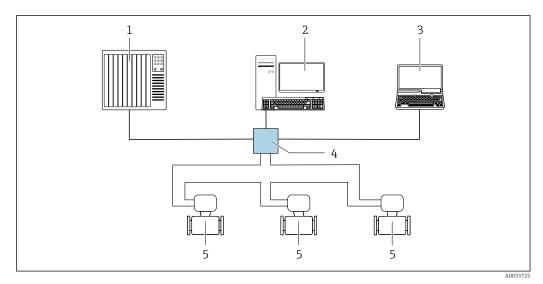

■ 55 Options for remote operation via Modbus-RS485 protocol (active)

- 1 Control system (e.g. PLC)
- 2 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or with operating tool (e.g. FieldCare, DeviceCare) with COM DTM "CDI Communication TCP/IP" or Modbus DTM
- 3 Transmitter

Via EtherNet/IP network

This communication interface is available in device versions with EtherNet/IP.

Star topology

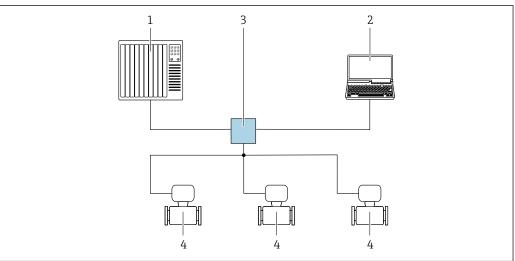

■ 56 Options for remote operation via EtherNet/IP network: star topology

- l Automation system, e.g. "RSLogix" (Rockwell Automation)
- Workstation for measuring device operation: with Custom Add-On Profile for "RSLogix 5000" (Rockwell Automation) or with Electronic Data Sheet (EDS)
- 3 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated Web server or computer with operating tool (e.g. FieldCare, DeviceCare) with COM DTM "CDI Communication TCP/IP"
- 4 Standard Ethernet switch, e.g. Scalance X204 (Siemens)
- 5 Measuring device

Ring topology

The device is integrated via the terminal connection for signal transmission (output 1) and the service interface (CDI-RJ45).

97

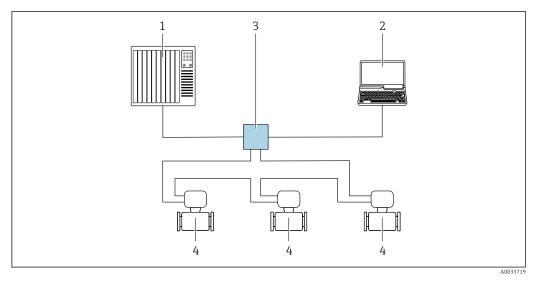

■ 57 Options for remote operation via EtherNet/IP network: ring topology

- 1 Automation system, e.g. "RSLogix" (Rockwell Automation)
- 2 Workstation for measuring device operation: with Custom Add-On Profile for "RSLogix 5000" (Rockwell Automation) or with Electronic Data Sheet (EDS)
- 3 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated Web server or computer with operating tool (e.g. FieldCare, DeviceCare) with COM DTM "CDI Communication TCP/IP"
- 4 Standard Ethernet switch, e.g. Scalance X204 (Siemens)
- 5 Measuring device

Via PROFINET network

This communication interface is available in device versions with PROFINET.

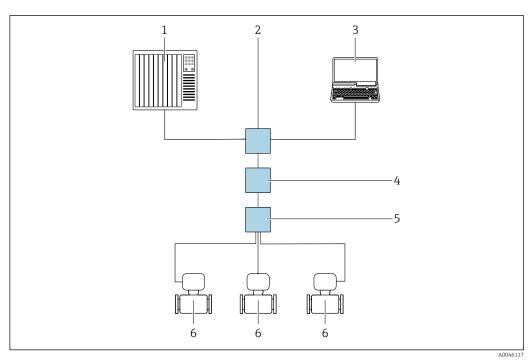
Star topology


A002654

 \blacksquare 58 Options for remote operation via PROFINET network: star topology

- 1 Automation system, e.g. Simatic S7 (Siemens)
- 2 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated Web server or computer with operating tool (e.g. FieldCare, DeviceCare, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet switch, e.g. Scalance X204 (Siemens)
- 4 Measuring device

Ring topology


The device is integrated via the terminal connection for signal transmission (output 1) and the service interface (CDI-RJ45).

■ 59 Options for remote operation via PROFINET network: ring topology

- 1 Automation system, e.g. Simatic S7 (Siemens)
- 2 Computer with Web browser (e.g. Internet Explorer) for accessing the integrated Web server or computer with operating tool (e.g. FieldCare, DeviceCare, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet switch, e.g. Scalance X204 (Siemens)
- 4 Measuring device

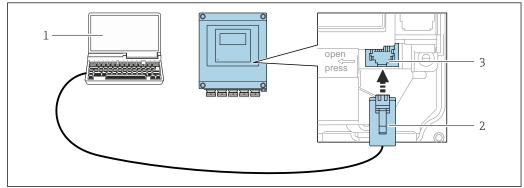
Via APL network

 \blacksquare 60 Options for remote operation via APL network

- Automation system, e.g. Simatic S7 (Siemens)
- 2 Ethernet switch, e.g. Scalance X204 (Siemens)
- 3 Computer with Web browser (e.g. Internet Explorer) for access to integrated Web server or computer with operating tool (e.g. FieldCare or DeviceCare with PROFINET COM DTM or SIMATIC PDM with FDI-Package)
- 4 APL power switch (optional)
- 5 APL field switch
- 6 Measuring device

99

Service interface

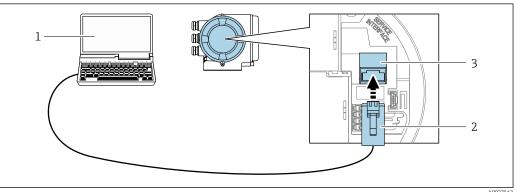

Via service interface (CDI-RJ45)

A point-to-point connection can be established via onsite device configuration. With the housing open, the connection is established directly via the service interface (CDI-RJ45) of the device.

An adapter for RJ45 to the M12 plug is optionally available:
Order code for "Accessories", option **NB**: "Adapter RJ45 M12 (service interface)"

The adapter connects the service interface (CDI-RJ45) to an M12 plug mounted in the cable entry. The connection to the service interface can be established via an M12 plug without opening the device.

Proline 500 - digital transmitter

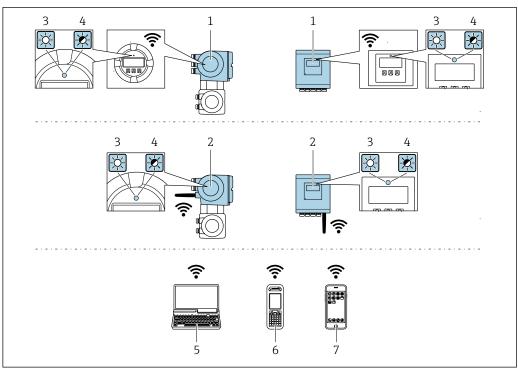


A00291

■ 61 Connection via service interface (CDI-RJ45)

- 1 Computer with Web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) for accessing the integrated Web server or with "FieldCare", "DeviceCare" operating tool with COM DTM "CDI Communication TCP/IP" or Modbus DTM
- 2 Standard Ethernet connecting cable with RJ45 plug
- 3 Service interface (CDI-RJ45) of the measuring device with access to the integrated Web server

Proline 500 transmitter


A0027563

■ 62 Connection via service interface (CDI-RJ45)

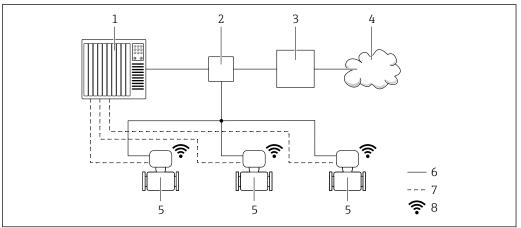
- 1 Computer with Web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) for accessing the integrated Web server or with "FieldCare", "DeviceCare" operating tool with COM DTM "CDI Communication TCP/IP" or Modbus DTM
- 2 Standard Ethernet connecting cable with RJ45 plug
- 3 Service interface (CDI-RJ45) of the measuring device with access to the integrated Web server

Via WLAN interface

The optional WLAN interface is available on the following device version: Order code for "Display; operation", option G "4-line, illuminated; touch control + WLAN"

- Transmitter with integrated WLAN antenna
- 2 Transmitter with external WLAN antenna
- 3 LED lit constantly: WLAN reception is enabled on measuring device
- LED flashing: WLAN connection established between operating unit and measuring device
- Computer with WLAN interface and Web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) for accessing the integrated device Web server or with operating tool (e.g. FieldCare, DeviceCare)
- Mobile handheld terminal with WLAN interface and Web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) for accessing the integrated device Web server or operating tool (e.g. FieldCare, DeviceCare)
- Smart phone or tablet (e.g. Field Xpert SMT70)

Function	WLAN: IEEE 802.11 b/g (2.4 GHz) • Access Point with DHCP server (factory setting) • Network	
Encryption	WPA2-PSK AES-128 (in accordance with IEEE 802.11i)	
Configurable WLAN channels	1 to 11	
Degree of protection	IP67	
Available antennas	 Internal antenna External antenna (optional) In the event of poor transmission/reception conditions at the place of installation. Available as an accessory . Only 1 antenna is active at any one time! 	
Range	 Internal antenna: typically 10 m (32 ft) External antenna: typically 50 m (164 ft) 	
Materials (external antenna)	 Antenna: ASA plastic (acrylic ester-styrene-acrylonitrile) and nickel-plated brass Adapter: Stainless steel and nickel-plated brass Cable: Polyethylene Plug: Nickel-plated brass Angle bracket: Stainless steel 	


Network integration

Network integration is only available for the HART communication protocol. \\

With the optional "OPC-UA Server" application package, the device can be integrated into an Ethernet network via the service interface (CDI-RJ45 and WLAN) and communicate with OPC-UA clients. If the device is used in this way, IT security must be considered.

Transmitters with an Ex de approval may **not** be connected via the service interface (CDI-RJ45)! Order code for "Approval transmitter + sensor", options (Ex de): BB, C2, GB, MB, NB

For permanent access to device data and for device configuration via the Web server, the device is incorporated directly in a network via the service interface (CDI-RJ45). In this way, the device can be accessed any time from the control station. The measured values are processed separately via the inputs and outputs through the automation system.

A003361

- 1 Automation system, e.g. Simatic S7 (Siemens)
- 2 Ethernet switch
- 3 Edge Gateway
- 4 Cloud
- 5 Measuring device
- 6 Ethernet network
- 7 Measured values via inputs and outputs
- 8 Optional WLAN interface
- The optional WLAN interface is available on the following device version:

 Order code for "Display; operation", option **G** "4-line, backlit, graphic display; touch control + WLAN"
- Special Documentation for the OPC-UA Server application package $\rightarrow~\cong~116$.

Supported operating tools

Different operating tools can be used for local or remote access to the measuring device. Depending on the operating tool used, access is possible with different operating units and via a variety of interfaces.

Supported operating tools	Operating unit	Interface	Additional information
Web browser	Notebook, PC or tablet with Web browser	 CDI-RJ45 service interface WLAN interface Ethernet-based fieldbus (EtherNet/IP, PROFINET) 	Special Documentation for the device → 🖺 116
DeviceCare SFE100	Notebook, PC or tablet with Microsoft Windows system	CDI-RJ45 service interfaceWLAN interfaceFieldbus protocol	→ 🖺 114
FieldCare SFE500	Notebook, PC or tablet with Microsoft Windows system	CDI-RJ45 service interfaceWLAN interfaceFieldbus protocol	→ 🖺 114

Supported operating tools	Operating unit	Interface	Additional information
Field Xpert	SMT70/77/50	 All fieldbus protocols WLAN interface Bluetooth CDI-RJ45 service interface 	Operating Instructions BA01202S Device description files: Use update function of handheld terminal
SmartBlue app	Smart phone or tablet with iOs or Android	WLAN	→ 🗎 114

Other operating tools based on FDT technology with a device driver such as DTM/iDTM or DD/EDD can be used for device operation. These operating tools are available from the individual manufacturers. Integration into the following operating tools, among others, is supported:

Web server

Thanks to the integrated Web server the device can be operated and configured via a Web browser and via the service interface (CDI-RJ45) or via the WLAN interface. The structure of the operating menu is the same as for the local display. In addition to the measured values, device status information is also displayed and allows users to monitor the status of the device. Furthermore the device data can be managed and the network parameters can be configured.

A device that has a WLAN interface (can be ordered as an option) is required for the WLAN connection: order code for "Display; operation", option G "4-line, illuminated; touch control + WLAN". The device acts as an Access Point and enables communication by computer or a mobile handheld terminal.

Supported functions

Data exchange between the operating unit (such as a notebook for example) and the measuring device:

- Upload the configuration from the measuring device (XML format, configuration backup)
- Save the configuration to the measuring device (XML format, restore configuration)
- Export event list (.csv file)
- Export parameter settings (.csv file or PDF file, document the measuring point configuration)
- Export the Heartbeat verification log (PDF file, only available with the "Heartbeat Verification" application package)
- Flash firmware version for device firmware upgrade, for instance
- Download driver for system integration
- Visualize up to 1000 saved measured values (only available with the Extended HistoROM application package →

 110)

Web server special documentation $\rightarrow \implies 116$

HistoROM data management

The measuring device features HistoROM data management. HistoROM data management comprises both the storage and import/export of key device and process data, making operation and servicing far more reliable, secure and efficient.

When the device is delivered, the factory settings of the configuration data are stored as a backup in the device memory. This memory can be overwritten with an updated data record, for example after commissioning.

Additional information on the data storage concept

There are different types of data storage units in which device data are stored and used by the device:

	HistoROM backup	T-DAT	S-DAT
Available data	 Event logbook such as diagnostic events for example Parameter data record backup Device firmware package Driver for system integration for exporting via Web server, e.g: GSD for PROFIBUS DP GSD for PROFIBUS PA GSDML for PROFINET EDS for EtherNet/IP DD for FOUNDATION Fieldbus 	Measured value logging ("Extended HistoROM" order option) Current parameter data record (used by firmware at run time) Maximum indicators (min/max values) Totalizer values	 Sensor data: nominal diameter etc. Serial number Calibration data Device configuration (e.g. SW options, fixed I/O or multi I/O)
Storage location	Fixed on the user interface board in the connection compartment	Attachable to the user interface board in the connection compartment	In the sensor plug in the transmitter neck part

Data backup

Automatic

- The most important device data (sensor and transmitter) are automatically saved in the DAT modules
- If the transmitter or measuring device is replaced: once the T-DAT containing the previous device data has been exchanged, the new measuring device is ready for operation again immediately without any errors
- If the sensor is replaced: once the sensor has been replaced, new sensor data are transferred from the S-DAT in the measuring device and the measuring device is ready for operation again immediately without any errors
- If exchanging the electronics module (e.g. I/O electronics module): Once the electronics module has been replaced, the software of the module is compared against the current device firmware. The module software is upgraded or downgraded where necessary. The electronics module is available for use immediately afterwards and no compatibility problems occur.

Manual

Additional parameter data record (complete parameter settings) in the integrated device memory HistoROM backup for:

- Data backup function
 Backup and subsequent restoration of a device configuration in the device memory HistoROM backup
- Data comparison function
 Comparison of the current device configuration with the device configuration saved in the device memory HistoROM backup

Data transmission

Manual

- Transfer of a device configuration to another device using the export function of the specific operating tool, e.g. with FieldCare, DeviceCare or Web server: to duplicate the configuration or to store in an archive (e.g. for backup purposes)
- Transmission of the drivers for system integration via Web server, e.g.:
 - GSD for PROFIBUS DP
 - GSD for PROFIBUS PA
 - GSDML for PROFINET
 - EDS for EtherNet/IP
 - DD for FOUNDATION Fieldbus

Event list

Automatic

- Chronological display of up to 20 event messages in the events list
- If the Extended HistoROM application package (order option) is enabled: up to 100 event messages are displayed in the events list along with a time stamp, plain text description and remedial measures
- The events list can be exported and displayed via a variety of interfaces and operating tools e.g. DeviceCare, FieldCare or Web server

Data logging

Manual

If the **Extended HistoROM** application package (order option) is enabled:

- Record up to 1000 measured values via 1 to 4 channels
- User configurable recording interval
- Record up to 250 measured values via each of the 4 memory channels
- Export the measured value log via a variety of interfaces and operating tools e.g. FieldCare, DeviceCare or web server

Certificates and approvals

Current certificates and approvals that are available for the product can be selected via the Product Configurator at

- 1. Select the product using the filters and search field.
- 2. Open the product page.
- 3. Select Configuration.

CE mark

The device meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

UKCA marking

The device meets the legal requirements of the applicable UK regulations (Statutory Instruments). These are listed in the UKCA Declaration of Conformity along with the designated standards. By selecting the order option for UKCA marking, onfirms a successful evaluation and testing of the device by affixing the UKCA mark.

RCM mark

The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".

Ex approval

The measuring device is certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.

Proline 500 - digital

ATEX/IECEx

Currently, the following versions for use in hazardous areas are available:

Ex ia

Transmitter		Sensor	
Category	Type of protection	Category	Type of protection
II(1)G	[Ex ia] IIC	II1/2G	Ex ia IIC T6T1 Ga/Gb
II(1)G	[Ex ia] IIC	II2G	Ex ia IIC T6T1 Gb
II3(1)G	Ex ec [ia Ga] IIC T5T4 Gc	II1/2G	Ex ia IIC T6T1 Ga/Gb
II3(1)G	Ex ec [ia Ga] IIC T5T4 Gc	II2G	Ex ia IIC T6T1 Gb

Ex tb

Transmitter		Sensor	
Category	Type of protection	Category	Type of protection
II(1)D	[Ex ia] IIIC	II2D	Ex ia tb IIIC T** °C Db

Non-Ex / Ex ec

Transmitter		Sensor	
Category	Type of protection	Category	Type of protection
Non - Ex	Non-Ex	II3G	Ex ec IIC T5T1 Gc
II3G	Ex ec IIC T5T4 Gc	II3G	Ex ec IIC T5T1 Gc

$_{C}CSA_{US}$

Currently, the following versions for use in hazardous areas are available:

IS (Ex nA, Ex i)

Transmitter	Sensor	
Class I Division 2 Groups A - D	Class I, II, III Division 1 Groups A-G	

NI (Ex nA)

Transmitter	Sensor	
Class I Division 2 Groups A - D		

Ex nA / Ex i

Transmitter	Sensor	
Class I, Zone 2 AEx/ Ex nA [ia Ga] IIC T5T4 Gb	Class I, Zone 1 AEx/ Ex ia IIC T6T1 Ga/Gb	
Class I, Zone 2 AEx/ Ex nA [ia Ga] IIC T5T4 Gb	Class I, Zone 1 AEx/ Ex ia IIC T6T1 Gb	

Ex nA

Transmitter	Sensor	
Class I, Zone 2 AEx/ Ex nA IIC T5T4 Gc	Class I, Zone 2 AEx/ Ex nA IIC T5T1 Gc	

Ex tb

Transmitter	Sensor	
[AEx / Ex ia] IIIC	Zone 21 AEx/ Ex ia tb IIIC T** °C Db	

Proline 500

ATEX/IECEx

Currently, the following versions for use in hazardous areas are available:

Ex db eb

Transmitter		Sensor	
Category	Type of protection	Category	Type of protection
II2G	Ex db eb ia IIC T6T4 Gb	II1/2G	Ex ia IIC T6T1 Ga/Gb
II2G	Ex db eb ia IIC T6T4 Gb	II2G	Ex ia IIC T6T1 Gb

Ex db

Transmitter		Sensor	
Category	Type of protection	Category	Type of protection
II2G	Ex db ia IIC T6T4 Gb	II1/2G	Ex ia IIC T6T1 Ga/Gb
II2G	Ex db ia IIC T6T4 Gb	II2G	Ex ia IIC T6T1 Gb

Ex tb

Category	Type of protection	
	Transmitter	Sensor
II2D	Ex tb IIIC T85°C Db	Ex ia tb IIIC T** °C Db

Ех ес

Category	Type of protection	
	Transmitter	Sensor
II3G	Ex ec IIC T5T4 Gc	Ex ec IIC T5T1 Gc

$_{C}CSA_{US} \\$

Currently, the following versions for use in hazardous areas are available:

IS (Ex i) and XP (Ex d)

Transmitter	Sensor
Class I, II, III Division 1 Groups A-G	

NI (Ex nA)

Transmitter	Sensor
Class I Division 2 Groups	ABCD

Ex de

Transmitter	Sensor
Class I, Zone 1 AEx/ Ex de ia IIC T6T4 Gb	Class I, Zone 1 AEx/ Ex ia IIC T6T1 Ga/Gb
Class I, Zone 1 AEx/ Ex de ia IIC T6T4 Gb	Class I, Zone 1 AEx/ Ex ia IIC T6T1 Gb

Ex d

Transmitter	Sensor
Class I, Zone 1 AEx/ Ex d ia IIC T6T4 Gb	Class I, Zone 1 AEx/ Ex ia IIC T6T1 Ga/Gb
Class I, Zone 1 AEx/ Ex d ia IIC T6T4 Gb	Class I, Zone 1 AEx/ Ex ia IIC T6T1 Gb

Ex nA

Transmitter	Sensor
Class I, Zone 2 AEx/ Ex nA IIC T5T4 Gc	Class I, Zone 2 AEx/ Ex nA IIC T5T1 Gc

Ex tb

Transmitter	Sensor
Zone 21 AEx/ Ex tb IIIC T85°C Db	Zone 21 AEx/ Ex ia tb IIIC T** °C Db

Functional safety

The measuring device can be used for flow monitoring systems (min., max., range) up to SIL 2 (single-channel architecture; order code for "Additional approval", option LA) and SIL 3 (multichannel architecture with homogeneous redundancy) and is independently evaluated and certified in accordance with IEC 61508.

The following types of monitoring in safety equipment are possible:

- Mass flow
- Volume flow
- Density

HART certification

HART interface

The measuring device is certified and registered by the FieldComm Group. The measuring system meets all the requirements of the following specifications:

- Certified according to HART 7
- The device can also be operated with certified devices of other manufacturers (interoperability)

FOUNDATION Fieldbus certification

FOUNDATION Fieldbus interface

The measuring device is certified and registered by the FieldComm Group. The measuring system meets all the requirements of the following specifications:

- Certified in accordance with FOUNDATION Fieldbus H1
- Interoperability Test Kit (ITK), revision version 6.2.0 (certificate available on request)
- Physical Layer Conformance Test
- The device can also be operated with certified devices of other manufacturers (interoperability)

Certification PROFIBUS

PROFIBUS interface

The measuring device is certified and registered by the PNO (PROFIBUS Nutzerorganisation e.V./ PROFIBUS User Organization). The measuring system meets all the requirements of the following specifications:

- Certified according to PA Profile 3.02
- The device can also be operated with certified devices of other manufacturers (interoperability)

EtherNet/IP certification

The measuring device is certified and registered by the ODVA (Open Device Vendor Association). The measuring system meets all the requirements of the following specifications:

- Certified in accordance with the ODVA Conformance Test
- EtherNet/IP Performance Test
- EtherNet/IP PlugFest compliance
- The device can also be operated with certified devices of other manufacturers (interoperability)

Certification PROFINET

PROFINET interface

The measuring device is certified and registered by the PNO (PROFIBUS Nutzerorganisation e.V. / PROFIBUS User Organization). The measuring system meets all the requirements of the following specifications:

- Certified according to:
 - Test specification for PROFINET devices
 - PROFINET Security Level 2 Netload Class 2 0 Mbps
- The device can also be operated with certified devices of other manufacturers (interoperability)
- The device supports PROFINET S2 system redundancy.

Certification PROFINET with Ethernet-APL

PROFINET interface

The measuring device is certified and registered by the PNO (PROFIBUS Nutzerorganisation e.V. / PROFIBUS User Organization). The measuring system meets all the requirements of the following specifications:

- Certified according to:
 - Test specification for PROFINET devices
 - PROFINET PA Profile 4
 - PROFINET Security Level 2 Netload Class 2 0 Mbps
 - APL conformance test
- The device can also be operated with certified devices of other manufacturers (interoperability)
- The device supports PROFINET S2 system redundancy.

Radio approval

The measuring device has radio approval.

Additional certification

CRN approval

Some device versions have CRN approval. A CRN-approved process connection with a CSA approval must be ordered for a CRN-approved device.

Tests and certificates

- EN10204-3.1 material certificate, wetted parts and sensor housing
- Pressure test, internal process, inspection certificate
- PMI test (XRF), internal procedure, wetted parts, test report

Other standards and quidelines

■ EN 60529

Degrees of protection provided by enclosures (IP code)

■ IEC/EN 60068-2-6

Environmental influences: Test procedure - Test Fc: vibrate (sinusoidal).

■ IEC/EN 60068-2-31

Environmental influences: Test procedure - Test Ec: shocks due to rough handling, primarily for devices.

■ EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use - general requirements

■ IEC/EN 61326-2-3

Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements).

NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment

■ NAMUR NE 32

Data retention in the event of a power failure in field and control instruments with microprocessors

NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

■ NAMUR NE 53

Software of field devices and signal-processing devices with digital electronics

■ NAMUR NE 105

Specifications for integrating fieldbus devices in engineering tools for field devices

- NAMUR NE 107
- Self-monitoring and diagnosis of field devices
- NAMUR NE 131
 - Requirements for field devices for standard applications
- NAMUR NE 132
 Coriolis mass meter

Ordering information

Detailed ordering information is available from your nearest sales organization or in the Product Configurator at

- 1. Select the product using the filters and search field.
- 2. Open the product page.
- 3. Select **Configuration**.

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered with the device or subsequently from Detailed information on the order code in question is available from your local ales center or on the product page of the

Detailed information on the application packages: Special Documentation for the device $\rightarrow \implies 115$

Diagnostic functionality

Order code for "Application package", option EA "Extended HistoROM"

Comprises extended functions concerning the event log and the activation of the measured value memory.

Event log:

Memory volume is extended from 20 message entries (standard version) to up to 100 entries.

Data logging (line recorder):

- Memory capacity for up to 1000 measured values is activated.
- 250 measured values can be output via each of the 4 memory channels. The recording interval can
 be defined and configured by the user.
- Measured value logs can be accessed via the local display or operating tool e.g. FieldCare, DeviceCare or Web server.

For detailed information, see the Operating Instructions for the device.

Heartbeat Technology

Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

Heartbeat Verification

Meets the requirement for traceable verification to DIN ISO 9001:2008 Chapter 7.6 a) "Control of monitoring and measuring equipment".

- Functional testing in the installed state without interrupting the process.
- Traceable verification results on request, including a report.
- Simple testing process via local operation or other operating interfaces.
- Clear measuring point assessment (pass/fail) with high test coverage within the framework of manufacturer specifications.
- Extension of calibration intervals according to operator's risk assessment.

Heartbeat Monitoring

Continuously supplies data, which are characteristic of the measuring principle, to an external condition monitoring system for the purpose of preventive maintenance or process analysis. These data enable the operator to:

- Draw conclusions using these data and other information about the impact the process influences (e.g. corrosion, abrasion, formation of buildup etc.) have on measuring performance over time.
- Schedule servicing in time.
- Monitor the process or product quality, e.g. gas pockets.

For detailed information, see the Special Documentation for the device.

Concentration measurement

Order code for "Application package", option ED "Concentration"

Calculation and outputting of fluid concentrations.

The measured density is converted to the concentration of a substance of a binary mixture using the "Concentration" application package:

- Choice of predefined fluids (e.g. various sugar solutions, acids, alkalis, salts, ethanol etc.).
- Common or user-defined units ("Brix, "Plato, % mass, % volume, mol/l etc.) for standard applications.
- Concentration calculation from user-defined tables.

For detailed information, see the Special Documentation for the device.

Special density

Order code for "Application package", option EE "Special density"

Many applications use density as a key measured value for monitoring quality or controlling processes. The device measures the density of the fluid as standard and makes this value available to the control system.

The "Special Density" application package offers high-precision density measurement over a wide density and temperature range particularly for applications subject to varying process conditions.

For detailed information, see the Operating Instructions for the device.

OPC-UA Server

Order code for "Application package", option EL "OPC-UA Server"

The application package provides an integrated OPC-UA server for comprehensive device services for IoT and SCADA applications.

For detailed information, see the Special Documentation for the device.

По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Россия +7(495)268-04-70

Казахстан +7(7172)727-132

Киргизия +996(312)96-26-47