Датчики температуры Omnigrad S TR61, TC61

Техническая информация

По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Вологорад (844)278-03-48 Вологорад (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Россия +7(495)268-04-70

Казахстан +7(7172)727-132

Киргизия +996(312)96-26-47

эл.почта: ehr@nt-rt.ru || сайт: https://endcounters.nt-rt.ru/

Technical Information Omnigrad S TR61, TC61

Modular thermometer, explosion-protected, with thermowell and extension neck, various process connections

TR61 Resistance thermometer (RTD) TC61 Thermometer with thermocouple (TC)

Application

- Heavy duty applications
- Oil & Gas processing industry
- Measuring range:
 - Resistance insert (RTD): -200 to 600 °C (-328 to 1112 °F)
 Thermocouple (TC): -40 to 1100 °C (-40 to 2012 °F)
- Static pressure range up to 75 bar dependent on the used process connection
- Protection class: IP66/68

Head transmitter

All transmitters are available with enhanced accuracy and reliability compared to directly wired sensors. Easy customizing by choosing one of the following outputs and communication protocols:

- Analog output 4 to 20 mA
- HART®
- PROFIBUS[®] PA
- FOUNDATION Fieldbus™

Your benefits

- High degree of flexibility thanks to modular design with standard terminal heads as per DIN EN 50446 and customer-specific immersion lengths
- High degree of insert compatibility and design as per DIN 43772
- Extension neck to protect the head transmitter from overheating
- Fast response time with reduced/tapered tip form
- Types of protection for use in hazardous locations:
 - Intrinsic Safety (Ex ia)
 - Flameproof (Ex d)
 - Non-sparking (Ex nA)

Function and system design

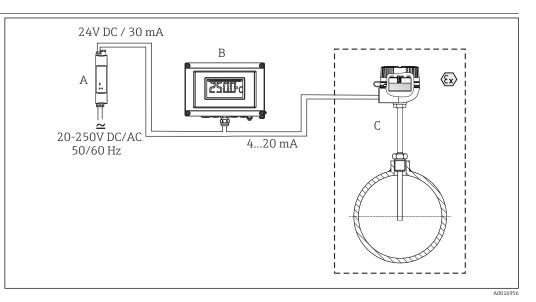
Measuring principle

Resistance thermometer (RTD)

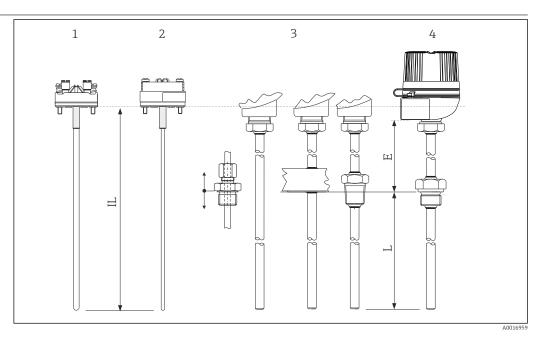
These resistance thermometers use a Pt100 temperature sensor according to IEC 60751. The temperature sensor is a temperature-sensitive platinum resistor with a resistance of 100 Ω at 0 °C (32 °F) and a temperature coefficient α = 0.003851 °C⁻¹.

There are generally two different kinds of platinum resistance thermometers:

- Wire wound (WW): Here, a double coil of fine, high-purity platinum wire is located in a ceramic support. This is then sealed top and bottom with a ceramic protective layer. Such resistance thermometers not only facilitate very reproducible measurements but also offer good long-term stability of the resistance/temperature characteristic within temperature ranges up to 600 °C (1112 °F). This type of sensor is relatively large in size and it is comparatively sensitive to vibrations.
- Thin film platinum resistance thermometers (TF): A very thin, ultrapure platinum layer, approx. 1 µm thick, is vaporized in a vacuum on a ceramic substrate and then structured photolithographically. The platinum conductor paths formed in this way create the measuring resistance. Additional covering and passivation layers are applied and reliably protect the thin platinum layer from contamination and oxidation, even at high temperatures.


The primary advantages of thin film temperature sensors over wire wound versions are their smaller sizes and better vibration resistance. A relatively low principle-based deviation of the resistance/ temperature characteristic from the standard characteristic of IEC 60751 can frequently be observed among TF sensors at high temperatures. As a result, the tight limit values of tolerance category A as per IEC 60751 can only be observed with TF sensors at temperatures up to approx. 300 °C (572 °F). For this reason, thin-film sensors are generally only used for temperature measurements in ranges below 400 °C (932 °F).

Thermocouples (TC)


Thermocouples are comparatively simple, robust temperature sensors which use the Seebeck effect for temperature measurement: if two electrical conductors made of different materials are connected at a point, a weak electrical voltage can be measured between the two open conductor ends if the conductors are subjected to a thermal gradient. This voltage is called thermoelectric voltage or electromotive force (emf.). Its magnitude depends on the type of conducting materials and the temperature difference between the "measuring point" (the junction of the two conductors) and the "cold junction" (the open conductor ends). Accordingly, thermocouples primarily only measure differences in temperature. The absolute temperature at the measuring point can be determined from these if the associated temperature at the cold junction is known or is measured separately and compensated for. The material combinations and associated thermoelectric voltage/temperature characteristics of the most common types of thermocouple are standardized in the IEC 60584 and ASTM E230/ANSI MC96.1 standards.

Measuring system

Design

- I Application example
- A Active barrier RN221N The RN221N (24 V DC, 30 mA) active barrier has a galvanically isolated output for supplying voltage to loop-powered transmitters. The universal power supply works with an input supply voltage of 20 to 250 V DC/AC, 50/60 Hz, which means that it can be used in all international power grids. More information on this can be found in the Technical Information (see "Documentation").
- B RIA16 field display unit The display unit records the analog measuring signal from the head transmitter and shows this on the display. The LC display shows the current measured value in digital form and as a bar graph indicating a limit value violation. The display unit is looped into the 4 to 20 mA circuit and gets the required energy from there. More information on this can be found in the Technical Information (see "Documentation").
- C Mounted thermometer with head transmitter installed.

☑ 2 Thermometer design

- 1 Insert with mounted ceramic connection socket (example)
- 2 Insert with mounted head transmitter (example)
- 3 Process connections
- 4 Complete thermometer with terminal head
- IL Total length of insert
- E Extension neck length
- L Immersion length

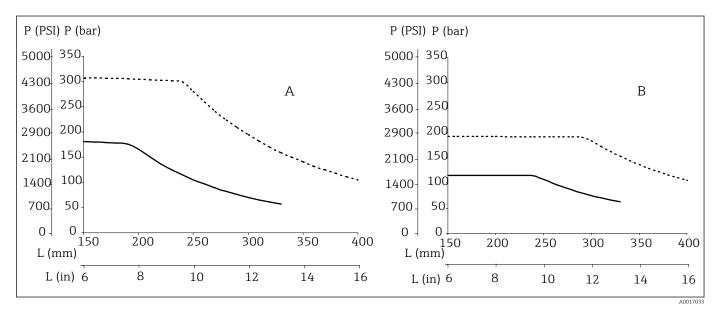
Thermometers from the Omnigrad S TR61 and TC61 series have a modular design. The terminal head is used as a connection module for the mechanical and electrical connection of the insert. The position of the actual thermometer sensor in the insert ensures that it is mechanically protected. The

insert can be exchanged and calibrated without interrupting the process. The insert has flying leads, a ceramic connection socket or mounted temperature transmitter.

Measurement	range

RTD: -200 to 600 °C (-328 to 1 112 °F)
TC: -40 to 1 100 °C (-40 to 2 012 °F)

Performance characteristics


Operating conditions

Ambient temperature

Terminal head	Temperature in °C (°F)
Without mounted head transmitter	Depends on the terminal head used and the cable gland or fieldbus connector, see Terminal heads' section ($\rightarrow \square 9$)
With mounted head transmitter	-40 to 85 °C (-40 to 185 °F)
With mounted head transmitter and display	−20 to 70 °C (−4 to 158 °F)

Process pressure

The pressure values to which the actual thermowell can be subjected at the various temperatures and maximum permitted flow velocity are illustrated by the figure below. Occasionally, the pressure loading capacity of the process connection can be considerably lower. The maximum allowable process pressure for a specific thermometer is derived from the lower pressure value of the thermowell and process connection.

☑ 3 Maximum permitted process pressure for tube diameter

A Medium water $T = 50 \degree C (122 \degree F)$

B Medium superheated steam at $T = 400 \degree C (752 \degree F)$

L Immersion length

- P Process pressure
- ____ Thermowell diameter 9 x 1 mm (0.35 in)
- --- Thermowell diameter 12 x 2.5 mm (0.47 in)

Process connection According to standard		Max. process pressure	
M20x1.5	DIN 13-6		
Thread G1"	ISO 228	75 har	
Thread G1/2", G3/4"	ISO 228	75 Dar	
Thread NPT 1/2", NPT 3/4"	ANSI B1.20.1		
Flange	EN1092-1 or ISO 7005-1	max. flange pressure stage PN40	
Flange	ASME B16.5	max. flange pressure stage 300 lb	
Compression fitting		40 bar with metal clamping ring 5 bar with PTFE clamping ring	

Maximum flow velocity

The highest flow velocity tolerated by the thermowell diminishes with increasing immersion length exposed to the stream of the fluid. Detailed information may be taken from the figures below.

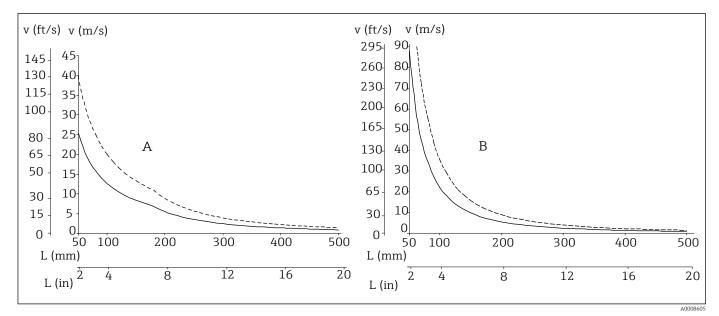
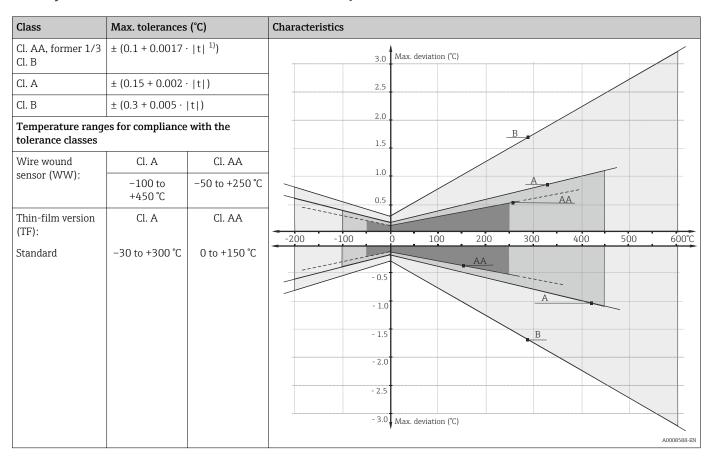


Image: Flow velocity depending on the immersion length

- A Medium water at $T = 50 \degree C (122 \degree F)$
- B Medium superheated steam at T = 400 °C (752 °F)


L Immersion length

v Flow velocity

- ____ Thermowell diameter 9 x 1 mm (0.35 in)
- --- Thermowell diameter 12 x 2.5 mm (0.47 in)

Shock and vibration resistance

- RTD: 3G / 10 to 500 Hz according to IEC 60751
- TC: 4G / 2 to 150 Hz according to IEC 60068-2-6

Accuracy RTD resistance thermometer as per IEC 60751

1) |t| = absolute value °C

In order to obtain the maximum tolerances in °F, the results in °C must be multiplied by a factor of 1.8.

Permissible deviation limits of thermoelectric voltages from the standard characteristic for thermocouples as per IEC 60584 or ASTM E230/ANSI MC96.1:

Standard	Туре	Standard tolerance		Special tolerance	
IEC 60584		Class	Class Deviation		Deviation
	J (Fe-CuNi)	2	2 ±2.5 °C (-40 to 333 °C) ±0.0075 t ¹⁾ (333 to 750 °C)		±1.5 °C (-40 to 375 °C) ±0.004 t ¹⁾ (375 to 750 °C)
	K (NiCr-NiAl)	2	±2.5 °C (−40 to 333 °C) ±0.0075 t ¹⁾ (333 to 1200 °C)	1	±1.5 °C (-40 to 375 °C) ±0.004 t ¹⁾ (375 to 1000 °C)

1) |t| = absolute value °C

Standard	Туре	Standard tolerance	Special tolerance
ASTM E230/ANSI		Deviation, the larger respective value applies	
MC96.1 J (Fe-CuNi)		± 2.2 K or ± 0.0075 t ¹⁾ (0 to 760 °C)	±1.1 K or ±0.004 t ¹⁾ (0 to 760 °C)
	K (NiCr-NiAl)	± 2.2 K or ± 0.02 t ¹⁾ (-200 to 0 °C) ± 2.2 K or ± 0.0075 t ¹⁾ (0 to 1260 °C)	± 1.1 K or ± 0.004 t ¹⁾ (0 to 1260 °C)

1) |t| = absolute value °C

Response time

Calculated at an ambient temperature of approx. 23 $^\circ C$ by immersing in running water (0.4 m/s flow rate, 10 K excess temperature):

Thermometer type	Diameter	t _(x)	Reduced tip	Tapered tip	Straight tip
Resistance	9 mm (0.35 in)	t ₅₀	7.5 s	11 s	18 s
thermometer (measuring		t ₉₀	21 s	37 s	55 s
probe Pt100, TF/WW)	11 mm (0.43 in)	t ₅₀	7.5 s	not available	18 s
11/ 00 00)		t ₉₀	21 s	not available	55 s
	12 mm (0.47 in)	t ₅₀	not available	11 s	18 s
		t ₉₀	not available	37 s	55 s
Thermocouple	hermocouple 9 mm (0.35 in)		5.5 s	9 s	15 s
		t ₉₀	13 s	31 s	46 s
	11 mm (0.43 in)	t ₅₀	5.5 s	not available	15 s
		t ₉₀	13 s	not available	46 s
	12 mm (0.47 in)	t ₅₀	not available	8.5 s	32 s
		t ₉₀	not available	20 s	106 s

Response time for insert without transmitter.

-

 Insulation resistance
 Insulation resistance ≥ 100 MΩ at ambient temperature.

 Insulation resistance between the terminals and the mineral insulated cable is measured with a voltage of 100 V DC.

 Self heating
 RTD elements are passive resistances that are measured using an external current. This measurement current causes a self-heating effect in the RTD element itself which in turn creates an additional measurement error. In addition to the measurement current, the size of the measurement error is also affected by the temperature conductivity and flow velocity of the process. This self-heating error is negligible when an

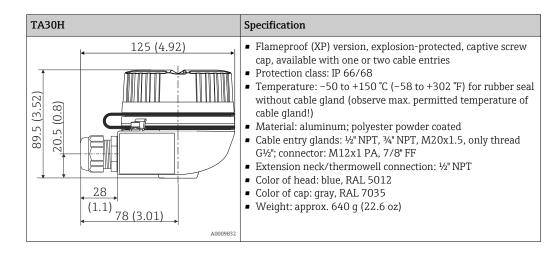
 Calibration
 provides comparison temperature calibration from -80 to +1400 °C (-110 to +2552 °F) based on the International Temperature Scale (ITS90). Calibrations are traceable to national and international standards. The calibration certificate is referenced to the serial number of the thermometer. Only the insert is calibrated.

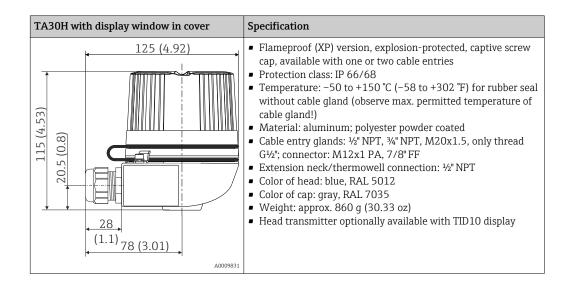
Insert: Ø6 mm (0.24 in) and 3 mm (0.12 in)	Minimum insertion length of insert in mm (in)			
Temperature range	without head transmitter with head transmitte			
-80 to -40 °C (-110 to -40 °F)	200 (7.87)			
-40 to 0 °C (-40 to 32 °F)	160 (6.3)			
0 to 250 °C (32 to 480 °F)	120 (4.72) 150 (5.91)			
250 to 550 °C (480 to 1020 °F)	300 (11.81)			
550 to 1400 °C (1020 to 2552 °F)	450 (17.72)			

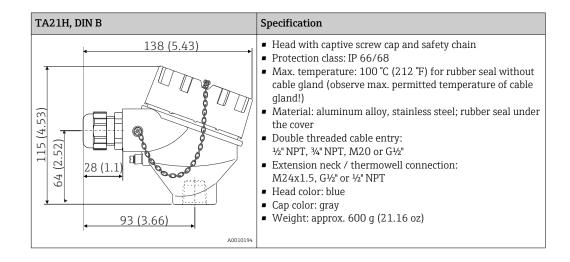
Material

Extension neck, thermowell, insert.

The temperatures for continuous operation specified in the following table are only intended as reference values for use of the various materials in air and without any significant compressive load. The maximum operation temperatures are reduced considerably in some cases where abnormal conditions such as high mechanical load occur or in aggressive media.

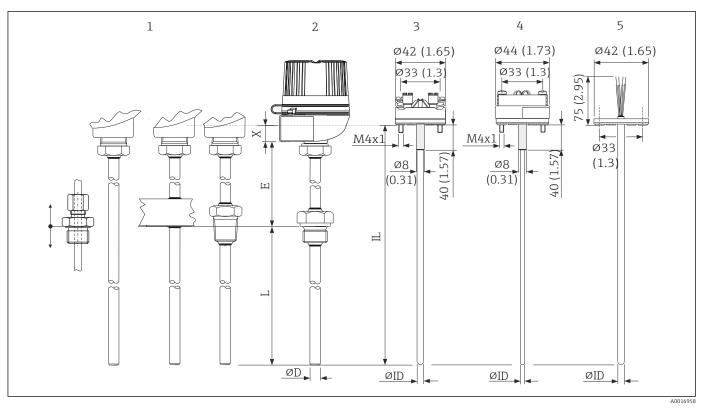

Material name	Short form	Recommended max. temperature for continuous use in air	Properties
AISI 316/1.4401	X5CrNiMo 17-12-2	650 °C (1202 °F) ¹⁾	 Austenitic, stainless steel High corrosion resistance in general Particularly high corrosion resistance in chlorine-based and acidic, non-oxidizing atmospheres through the addition of molybdenum (e.g. phosphoric and sulfuric acids, acetic and tartaric acids with a low concentration)
AISI 316L/ 1.4404 1.4435	X2CrNiMo17-12-2 X2CrNiMo18-14-3	650 °C (1202 °F) ¹⁾	 Austenitic, stainless steel High corrosion resistance in general Particularly high corrosion resistance in chlorine-based and acidic, non-oxidizing atmospheres through the addition of molybdenum (e.g. phosphoric and sulfuric acids, acetic and tartaric acids with a low concentration) Increased resistance to intergranular corrosion and pitting Compared to 1.4404, 1.4435 has even higher corrosion resistance and a lower delta ferrite content
AISI 316Ti/ 1.4571	X6CrNiMoTi17-12-2	700 °C (1292 °F) ¹⁾	 Properties comparable to AISI316L Addition of titanium means increased resistance to intergranular corrosion even after welding Broad range of uses in the chemical, petrochemical and oil industries as well as in coal chemistry Can only be polished to a limited extent, titanium streaks can form
Inconel600/ 2.4816	NiCr15Fe	1100 ℃ (2012 ℉)	 A nickel/chromium alloy with very good resistance to aggressive, oxidizing and reducing atmospheres, even at high temperatures Resistance to corrosion caused by chlorine gases and chlorinated media as well as many oxidizing mineral and organic acids, sea water etc. Corrosion from ultrapure water Not to be used in sulfur-containing atmospheres
Hastelloy C276/2.4819	NiMo16Cr15W	1 100 ℃ (2 012 ℉)	 A nickel-based alloy with good resistance to oxidizing and reducing atmospheres, even at high temperatures Particularly resistant to chlorine gas and chloride as well as to many oxidizing mineral and organic acids


1) Can be used to a limited extent up to 800 °C (1472 °F) for low compressive loads and in non-corrosive media. Please contact your sales team for further information.


Components

Family of temperature transmitters	Thermometers fitted with iTEMP [®] transmitters are an installation-ready complete solution to improve temperature measurement by significantly increasing accuracy and reliability, when compared to direct wired sensors, as well as reducing both wiring and maintenance costs.
	PC programmable head transmitters They offer a high degree of flexibility, thereby supporting universal application with low inventory storage. The iTEMP [®] transmitters can be configured quickly and easily at a PC. offers free configuration software which can be downloaded from the Website. More information can be found in the Technical Information.
	HART[®] programmable head transmitters The transmitter is a 2-wire device with one or two measuring inputs and one analog output. The device not only transfers converted signals from resistance thermometers and thermocouples, it also transfers resistance and voltage signals using HART [®] communication. It can be installed as an intrinsically safe apparatus in Zone 1 hazardous areas and is used for instrumentation in the terminal head (flat face) as per DIN EN 50446. Swift and easy operation, visualization and maintenance by PC using operating software, Simatic PDM or AMS. For more information, see the Technical Information.
	PROFIBUS® PA head transmitters Universally programmable head transmitter with PROFIBUS® PA communication. Conversion of various input signals into digital output signals. High accuracy over the complete ambient temperature range. Swift and easy operation, visualization and maintenance using a PC directly from the control panel, e. g. using operating software, Simatic PDM or AMS. For more information, see the Technical Information.
	FOUNDATION Fieldbus [™] head transmitters Universally programmable head transmitter with FOUNDATION Fieldbus [™] communication. Conversion of various input signals into digital output signals. High accuracy over the complete ambient temperature range. Swift and easy operation, visualization and maintenance using a PC directly from the control panel, e.g. using operating software such as ControlCare from +Hauser or NI Configurator from National Instruments. For more information, see the Technical Information.
	 Advantages of the iTEMP® transmitters: Dual or single sensor input (optionally for certain transmitters) Unsurpassed reliability, accuracy and long-term stability in critical processes Mathematical functions Monitoring of the thermometer drift, sensor backup functionality, sensor diagnostic functions Sensor-transmitter matching for dual sensor input transmitters, based on Callendar/Van Dusen coefficients
Terminal heads	All terminal heads have an internal shape and size in accordance with DIN EN 50446, flat face and a thermometer connection of $M^2/v^1 = G^1/2^n$ or $1/2^n$ NPT thread. All dimensions in mm (in) The

All terminal heads have an internal shape and size in accordance with DIN EN 50446, flat face and a thermometer connection of M24x1.5, G1/2" or 1/2" NPT thread. All dimensions in mm (in). The cable glands in the diagrams correspond to M20x1.5 connections. Specifications without head transmitter installed. For ambient temperatures with head transmitter installed, see "Operating conditions" section.



All dimensions in mm (in).

■ 5 Dimensions of the Omnigrad S TR61 and TC61

- 1 Process connections
- 2 Complete thermometer with terminal head
- 3 Insert with terminal block mounted
- 4 Insert with head transmitter mounted
- 5 Insert with free wires
- IL Total length of insert
- *L Immersion length*
- E Extension neck length
- *X* Variable for calculating the length of the insert
- ID Insert diameter
- D Diameter

Tip shape

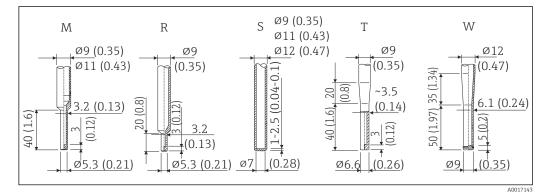


Image: Available thermowell tips (reduced, straight or tapered). Maximum surface roughness Ra $\leq 0.8 \, \mu m$ (31.5 μin)

Pos. No.	Tip shape, L = immersion length	Insert diameter
М	Reduced, $L \ge 70 \text{ mm} (2.76 \text{ in})$	3 mm (0.12 in)
R	Reduced, L ≥50 mm (1.97 in) ¹⁾	3 mm (0.12 in)
S	Straight	6 mm (0.24 in)
Т	Tapered, L \ge 90 mm (3.54 in) ¹⁾	3 mm (0.12 in)
W	Tapered DIN43772-3G, L \geq 115 mm (4.53 in) ¹⁾	6 mm (0.24 in)

1) not with material Hastelloy $^{\! \otimes}$ C276/2.4819 and Inconel600

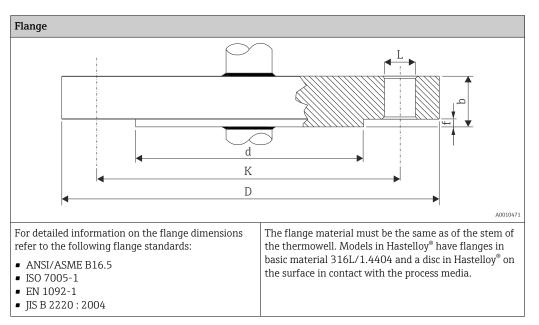
Weight

0.5 to 2.5 kg (1 to 5.5 lbs) for standard options.

Process connection

The process connection is the means of connecting the thermometer to the process. The following process connections are available:

Thread		Version		Thread length TL
Cylindrical	Conical	G	G1/2" DIN / BSP	15 mm (0.6 in)
. 9	<u> </u>			18 mm (0.71 in)
E SW/A	F SW/AF		G3/4" BSP	15 mm (0.6 in)
		NPT	NPT 1/2"	8 mm (0.32 in)
			NPT 3/4"	8.5 mm (0.33 in)
		R	R 1/2"	8.5 mm (0.33 in)
ML, L			R 3/4"	8.5 mm (0.33 in)
		М	M20x1.5	15 mm (0.6 in)
	A0008620			


Threaded compression fitting (TA50)	F	L	В	Clamping ring material	Max. process temperature	Max. process pressure
D	G1/2"	47 mm (1.85 in)	15 mm (0.6 in)	SS316 ¹⁾	500 ℃ (932 ℉)	40 bar at 20 °C (580 psi at 68 °F)
				PTFE ²⁾	200 °C (392 °F)	5 bar at 20 °C (72,5 psi at 68 °F)
	G1"	70 mm (2.76 in)	25 mm (0.98 in)	SS316 ¹⁾	500 ℃ (932 ℉)	40 bar at 20 °C (580 psi at 68 °F)
				PTFE ²⁾	200 ℃ (392 ℉)	5 bar at 20 °C (72,5 psi at 68 °F)
	R 1/2"	47 mm (1.85 in)	15 mm (0.6 in)	PTFE ²⁾	200 ℃ (392 ℉)	5 bar at 20 °C (72,5 psi at 68 °F)
	R 3/4"	53 mm (2.08 in)	20 mm (0.8 in)			
	R 1"	70 mm (2.76 in)	25 mm (0.98 in)			

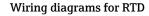
1) SS316 compression ferrule: Can only be used once, the compression fitting cannot be repositioned on the protection tube after loosening. Fully adjustable immersion length on initial installation. PTFE compression ferrule: Can be reused, after loosening the fitting can be moved up and down the

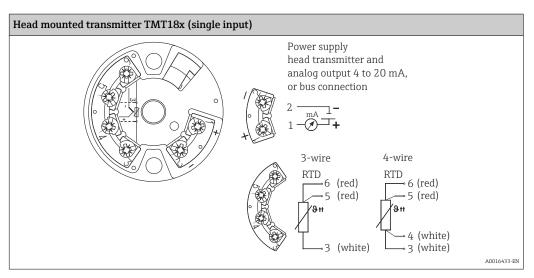
2) protection tube. With fully adjustable immersion length.

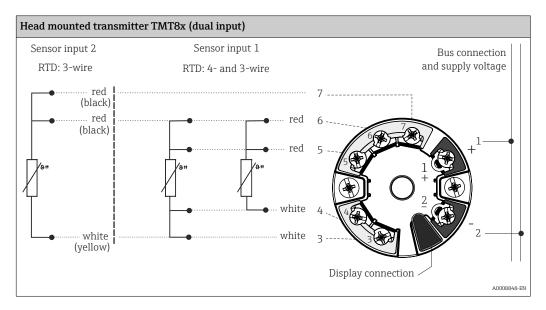
When using a compression fitting the thermometer is pushed through a gland and fixed using a compression ferrule (can be loosened) or a metal ferrule (cannot be loosened).

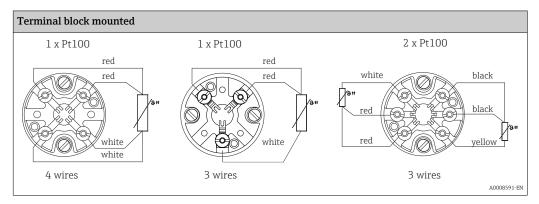
Spare parts

- The thermowells (TW10, TW11, TW12 and TW13) are available as spare parts ($\rightarrow \square$ 19)
- The RTD insert is available as spare part TPR100/TPR300 (\rightarrow 🖺 19)
- The TC insert is available as spare part TPC100/TPC300 ($\rightarrow \square$ 19)
- If the insert is required as a spare part, please note the following formulas:

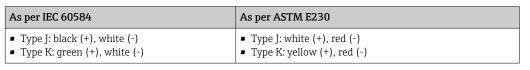

Universal or EX certification					
Insert	Ø mm	Thermowell	IL in mm (in)		
TPx100 / TPx300	3 or 6	TW10	IL = L + E + 28 (1.10)		
TPx100 / TPx300	3 or 6	TW11	IL = L + E + X (refer to table below)		
TPx100 / TPx300	3 or 6	TW12	IL = L + 58 (2.28)		
TPx100 / TPx300	3 or 6	TW13	IL = L + E + 28 (1.10)		

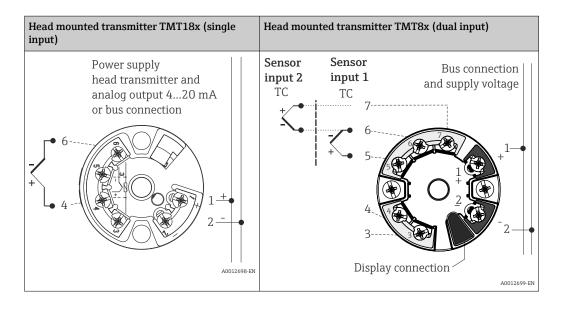

When using the thermowell TW11 the variable for calculating the length of the insert is dependent on the used process connection.

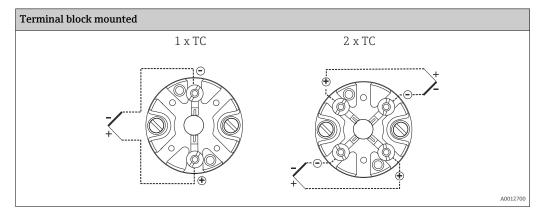

Process connection	Thread version	X = Variable for calculating the length of the insert
~7	G	65 mm (2.56 in)
	М	
A0017874		
~7	R	68 mm (2.68 in)
	NPT	70 mm (2.75 in)
A0017875		


Wiring

Type of sensor connection

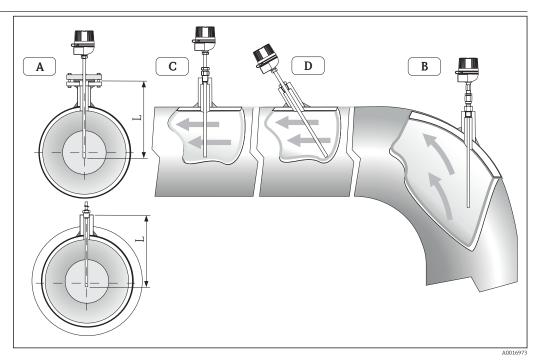






Wiring diagrams for TC

Thermocouple wire colors



Installation conditions

Orientation

Keine Beschränkungen.

Installation instructions

Installation examples

A - C In pipes with a small cross section the thermowell tip should reach or extend slightly past the center line of the pipe (=L).

B, D Angled installation.

The immersion length of the thermometer influences the accuracy. If the immersion length is too small then errors in the measurement are caused by heat conduction via the process connection and the container wall. If installing into a pipe then the immersion length must be at least half of the pipe diameter. A further solution could be an angled (tilted) installation (see figure B and D). When determining the immersion length all thermometer parameters and the process to be measured must be taken into account (e.g. flow velocity, process pressure).

- Installation possibilities: Pipes, tanks or other plant components
- Recommended Minimum immersion length = 80 to 100 mm (3.15 to 3.94 in) The immersion length should correspond to at least 8 times of the thermowell diameter. Example: Thermowell diameter 12 mm (0.47 in) x 8 = 96 mm (3.8 in). A standard immersion length of 120 mm (4.72 in) is recommended
- ATEX certification: Always take note of the installation regulations!

Extension neck length

The extension neck is the part between the process connection and the terminal head. As illustrated in the following diagram, the extension neck length influences the temperature in the terminal head. This temperature must remain within the limit values defined in the "Operating conditions" section.

■ 8 Heating of the terminal head consequent to the process temperature. Temperature in terminal head = ambient temperature 20 °C (68 °F) + ΔT

CE Mark	The device meets the legal requirements of the EC directives if applicable. +Hauser confirms that the device has been successfully tested by applying the CE mark.	
Hazardous area approvals	For further details on the available Ex versions (ATEX, CSA, FM etc.), please contact your nearest ales organization. All relevant data for hazardous areas can be found in separate Ex documentation.	
Other standards and guidelines	 EN 60079: ATEX certification for hazardous areas IEC 60529: Degree of protection of housing (IP code) IEC 61010-1: Protection Measures for Electrical Equipment for Measurement, Control, Regulation and Laboratory Procedures IEC 60751: Industrial platinum resistance thermometers IEC 60584 and ASTM E230/ANSI MC96.1: Thermocouples DIN 43772: Thermowells DIN EN 50446: Terminal heads IEC 61326-1: Electromagnetic compatibility (EMC requirements) 	
PED approval	The thermometer complies with paragraph 3.3 of the Pressure Equipment Directive 97/23/CE and is not marked separately.	
Test on thermowell	Thermowell pressure tests are carried out in accordance with the specifications in DIN 43772. With regard to thermowells with tapered or reduced tips that do not comply with this standard, these are tested using the pressure of corresponding straight thermowells. Sensors for use in hazardous areas are also always subjected to a comparative pressure during the tests. Tests according to other specifications can be carried out on request. The liquid penetration test verifies that there are no cracks in the welded seams of the thermowell.	
Test report and calibration	calibration The "Factory calibration" is carried out according to an internal procedure in a laboratory of +Hauser accredited by the European Accreditation Organization (EA) according to ISO/IEC 17025. A calibration which is performed according to EA guidelines (SIT/Accredia or DKD/DAkks calibration) may be requested separately. The calibration is performed on the replaceable insert of the thermometer. In the case of thermometers without a replaceable insert, the entire thermometer - from the process connection to the tip of the thermometer - is calibrated.	

Certificates and approvals

Ordering information

Detailed ordering information is available from the following sources:

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the

Documentation

Technical Information:

- Temperature head transmitter:
 - iTEMP[®] TMT180, PC-programmable, single-channel, Pt100 (TI00088R/09/en)
- iTEMP[®]PCP TMT181, PC-programmable, single-channel, RTD, TC, Ω, mV (TI00070R/09/en)
- iTEMP[®] HART[®] TMT182, single-channel, RTD, TC, Ω , mV (TI078R/09/en) iTEMP[®] HART[®] TMT82, two-channel, RTD, TC, Ω , mV (TI01010T/09/en)
- iTEMP[®] PROFIBUS[®] PA TMT84, two-channel, RTD, TC, Ω , mV (TI00138R/09/en)
- iTEMP[®] FOUNDATION FieldbusTM TMT85, two-channel, RTD, TC, Ω, mV (TI00134R/09/en) Inserts:
 - Resistance thermometer insert Omniset TPR100 (TI268T/02/en)
 - Thermocouple insert Omniset TPC100 (TI278T/02/en)
- Application example:
 - RN221N Active barrier, for supplying loop-powered transmitters (TI073R/09/en)
 - RIA16 Field display unit, loop-powered (TI00144R/09/en)

Technical Information on thermowells:

Thermowell type	
TW10	TI261T/02/en
TW11	TI262T/02/en
TW12	TI263T/02/en
TW13	TI00264T/02/en

Process connections:

Compression fitting Omnigrad TA50 (TI091T/02/en)

Hazardous area (ATEX) supplementary documentation:

- RTD/TC Thermometer Omnigrad TRxx, TCxx, TxCxxx, ATEX II 1GD or II 1/2GD Ex ia IIC T6...T1 (XA00072R/09/a3)
- RTD/TC Thermometer Omnigrad S TR/TC6x, ATEX II1/2, 2GD or II2G (XA014T/02/a3)
- RTD/TC Thermometer Omnigrad S TR/TC6x, ATEX II 1/2 or 2G; II 1/2 or 2D; II 2G (XA00084R/09/a3)
- Inserts Omniset TPR100, TPC100, ATEX/IECEx Ex ia (XA00100T/09/a3)

По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Вологорад (844)278-03-48 Вологорад (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Россия +7(495)268-04-70

Казахстан +7(7172)727-132

Киргизия +996(312)96-26-47

эл.почта: ehr@nt-rt.ru || сайт: https://endcounters.nt-rt.ru/